2022年AIME II 真题及答案

2022年AIME II 真题:

Problem 1

Adults made up $\frac5{12}$ of the crowd of people at a concert. After a bus carrying $50$ more people arrived, adults made up $\frac{11}{25}$ of the people at the concert. Find the minimum number of adults who could have been at the concert after the bus arrived.

Problem 2

Azar, Carl, Jon, and Sergey are the four players left in a singles tennis tournament. They are randomly assigned opponents in the semifinal matches, and the winners of those matches play each other in the final match to determine the winner of the tournament. When Azar plays Carl, Azar will win the match with probability $\frac23$. When either Azar or Carl plays either Jon or Sergey, Azar or Carl will win the match with probability $\frac34$. Assume that outcomes of different matches are independent. The probability that Carl will win the tournament is $\frac{p}{q}$, where $p$ and $q$ are relatively prime positive integers. Find $p+q$.

Problem 3

A right square pyramid with volume $54$ has a base with side length $6.$ The five vertices of the pyramid all lie on a sphere with radius $\frac mn$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.

Problem 4

There is a positive real number $x$ not equal to either $\tfrac{1}{20}$ or $\tfrac{1}{2}$ such that\[\log_{20x} (22x)=\log_{2x} (202x).\]The value $\log_{20x} (22x)$ can be written as $\log_{10} (\tfrac{m}{n})$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.

Problem 5

Twenty distinct points are marked on a circle and labeled $1$ through $20$ in clockwise order. A line segment is drawn between every pair of points whose labels differ by a prime number. Find the number of triangles formed whose vertices are among the original $20$ points.

Problem 6

Let $x_1\leq x_2\leq \cdots\leq x_{100}$ be real numbers such that $|x_1| + |x_2| + \cdots + |x_{100}| = 1$ and $x_1 + x_2 + \cdots + x_{100} = 0$. Among all such $100$-tuples of numbers, the greatest value that $x_{76} - x_{16}$ can achieve is $\tfrac mn$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.

以上仅展示2022年 AIME II 部分真题,完整版扫描文末二维码即可免费领取,还有更多AMC历年真题+视频解析~

更多AIME 历年真题+真题详解
扫码添加顾问即可免费领取

2023年AIME II 真题及答案

2023年AIME II 真题:

Problem 1

The numbers of apples growing on each of six apple trees form an arithmetic sequence where the greatest number of apples growing on any of the six trees is double the least number of apples growing on any of the six trees. The total number of apples growing on all six trees is $990.$ Find the greatest number of apples growing on any of the six trees.

Problem 2

Recall that a palindrome is a number that reads the same forward and backward. Find the greatest integer less than $1000$ that is a palindrome both when written in base ten and when written in base eight, such as $292 = 444_{\text{eight}}.$

Problem 3

Let $\triangle ABC$ be an isosceles triangle with $\angle A = 90^\circ.$ There exists a point $P$ inside $\triangle ABC$ such that $\angle PAB = \angle PBC = \angle PCA$ and $AP = 10.$ Find the area of $\triangle ABC.$

Problem 4

Let $x,y,$ and $z$ be real numbers satisfying the system of equations\begin{align*} xy + 4z &= 60 \\ yz + 4x &= 60 \\ zx + 4y &= 60. \end{align*}Let $S$ be the set of possible values of $x.$ Find the sum of the squares of the elements of $S.$

Problem 5

Let $S$ be the set of all positive rational numbers $r$ such that when the two numbers $r$ and $55r$ are written as fractions in lowest terms, the sum of the numerator and denominator of one fraction is the same as the sum of the numerator and denominator of the other fraction. The sum of all the elements of $S$ can be expressed in the form $\frac{p}{q},$ where $p$ and $q$ are relatively prime positive integers. Find $p+q.$

Problem 6

Consider the L-shaped region formed by three unit squares joined at their sides, as shown below. Two points $A$ and $B$ are chosen independently and uniformly at random from inside the region. The probability that the midpoint of $\overline{AB}$ also lies inside this L-shaped region can be expressed as $\frac{m}{n},$ where $m$ and $n$ are relatively prime positive integers. Find $m+n.$[asy] unitsize(2cm); draw((0,0)--(2,0)--(2,1)--(1,1)--(1,2)--(0,2)--cycle); draw((0,1)--(1,1)--(1,0),dashed); [/asy]

以上仅展示2023年 AIME II 部分真题,完整版扫描文末二维码即可免费领取,还有更多AMC历年真题+视频解析~

扫码免费领取更多AMC历年真题+答案

预约最新真题讲座、课程详情可添加下方顾问老师咨询 

2013年AIME I 真题及答案

2013年AIME I 真题:

Problem 1

The AIME Triathlon consists of a half-mile swim, a 30-mile bicycle ride, and an eight-mile run. Tom swims, bicycles, and runs at constant rates. He runs fives times as fast as he swims, and he bicycles twice as fast as he runs. Tom completes the AIME Triathlon in four and a quarter hours. How many minutes does he spend bicycling?

Problem 2

Find the number of five-digit positive integers, $n$, that satisfy the following conditions:

(a) the number n is divisible by 5,

    (b) the first and last digits of n are equal, and
    (c) the sum of the digits of n is divisible by 5.

Problem 3

Let $ABCD$ be a square, and let $E$ and $F$ be points on $\overline{AB}$ and $\overline{BC},$ respectively. The line through $E$ parallel to $\overline{BC}$ and the line through $F$ parallel to $\overline{AB}$ divide $ABCD$ into two squares and two nonsquare rectangles. The sum of the areas of the two squares is $\frac{9}{10}$ of the area of square $ABCD.$ Find $\frac{AE}{EB} + \frac{EB}{AE}.$

Problem 4

In the array of $13$ squares shown below, $8$ squares are colored red, and the remaining $5$ squares are colored blue. If one of all possible such colorings is chosen at random, the probability that the chosen colored array appears the same when rotated $90^{\circ}$ around the central square is $\frac{1}{n}$ , where $n$ is a positive integer. Find $n$.

[asy] draw((0,0)--(1,0)--(1,1)--(0,1)--(0,0)); draw((2,0)--(2,2)--(3,2)--(3,0)--(3,1)--(2,1)--(4,1)--(4,0)--(2,0)); draw((1,2)--(1,4)--(0,4)--(0,2)--(0,3)--(1,3)--(-1,3)--(-1,2)--(1,2)); draw((-1,1)--(-3,1)--(-3,0)--(-1,0)--(-2,0)--(-2,1)--(-2,-1)--(-1,-1)--(-1,1)); draw((0,-1)--(0,-3)--(1,-3)--(1,-1)--(1,-2)--(0,-2)--(2,-2)--(2,-1)--(0,-1)); size(100);[/asy]

Problem 5

The real root of the equation $8x^3-3x^2-3x-1=0$ can be written in the form $\frac{\sqrt[3]{a}+\sqrt[3]{b}+1}{c}$, where $a$$b$, and $c$ are positive integers. Find $a+b+c$.

Problem 6

Melinda has three empty boxes and $12$ textbooks, three of which are mathematics textbooks. One box will hold any three of her textbooks, one will hold any four of her textbooks, and one will hold any five of her textbooks. If Melinda packs her textbooks into these boxes in random order, the probability that all three mathematics textbooks end up in the same box can be written as $\frac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.

以下是我们为您整理的真题试卷,扫码即可免费领取完整版:

更多AIME 历年真题+真题详解
扫码添加顾问即可免费领取

1989年AJHSME 真题及答案

1989年AJHSME 真题:

Problem 1

$(1+11+21+31+41)+(9+19+29+39+49)=$

$\text{(A)}\ 150 \qquad \text{(B)}\ 199 \qquad \text{(C)}\ 200 \qquad \text{(D)}\ 249 \qquad \text{(E)}\ 250$

Problem 2

$\frac{2}{10}+\frac{4}{100}+\frac{6}{1000} =$

$\text{(A)}\ .012 \qquad \text{(B)}\ .0246 \qquad \text{(C)}\ .12 \qquad \text{(D)}\ .246 \qquad \text{(E)}\ 246$

Problem 3

Which of the following numbers is the largest?

$\text{(A)}\ .99 \qquad \text{(B)}\ .9099 \qquad \text{(C)}\ .9 \qquad \text{(D)}\ .909 \qquad \text{(E)}\ .9009$

Problem 4

Estimate to determine which of the following numbers is closest to $\frac{401}{.205}$.

$\text{(A)}\ .2 \qquad \text{(B)}\ 2 \qquad \text{(C)}\ 20 \qquad \text{(D)}\ 200 \qquad \text{(E)}\ 2000$

Problem 5

$-15+9\times (6\div 3) =$

$\text{(A)}\ -48 \qquad \text{(B)}\ -12 \qquad \text{(C)}\ -3 \qquad \text{(D)}\ 3 \qquad \text{(E)}\ 12$

Problem 6

If the markings on the number line are equally spaced, what is the number $\text{y}$?

[asy] draw((-4,0)--(26,0),Arrows); for(int a=0; a<6; ++a) { draw((4a,-1)--(4a,1)); } label("0",(0,-1),S); label("20",(20,-1),S); label("y",(12,-1),S); [/asy]

$\text{(A)}\ 3 \qquad \text{(B)}\ 10 \qquad \text{(C)}\ 12 \qquad \text{(D)}\ 15 \qquad \text{(E)}\ 16$

Problem 7

If the value of $20$ quarters and $10$ dimes equals the value of $10$ quarters and $n$ dimes, then $n=$

$\text{(A)}\ 10 \qquad \text{(B)}\ 20 \qquad \text{(C)}\ 30 \qquad \text{(D)}\ 35 \qquad \text{(E)}\ 45$

以下是我们为您整理的全英版pdf真题,扫码即可免费领取完整版:

扫码免费预约领取更多AMC历年真题+答案

预约最新真题讲座、课程详情可添加下方顾问老师咨询 

1988年AJHSME 真题及答案

1988年AJHSME 真题:

Problem 1

The diagram shows part of a scale of a measuring device. The arrow indicates an approximate reading of

[asy] draw((-3,0)..(0,3)..(3,0)); draw((-3.5,0)--(-2.5,0)); draw((0,2.5)--(0,3.5)); draw((2.5,0)--(3.5,0)); draw((1.8,1.8)--(2.5,2.5)); draw((-1.8,1.8)--(-2.5,2.5)); draw((0,0)--3*dir(120),EndArrow); label("$10$",(-2.6,0),E); label("$11$",(2.6,0),W); [/asy]

$\text{(A)}\ 10.05 \qquad \text{(B)}\ 10.15 \qquad \text{(C)}\ 10.25 \qquad \text{(D)}\ 10.3 \qquad \text{(E)}\ 10.6$

Problem 2

The product $8\times .25\times 2\times .125 =$

$\text{(A)}\ \frac18 \qquad \text{(B)}\ \frac14 \qquad \text{(C)}\ \frac12 \qquad \text{(D)}\ 1 \qquad \text{(E)}\ 2$

Problem 3

$\frac{1}{10}+\frac{2}{20}+\frac{3}{30} =$

$\text{(A)}\ .1 \qquad \text{(B)}\ .123 \qquad \text{(C)}\ .2 \qquad \text{(D)}\ .3 \qquad \text{(E)}\ .6$

Problem 4

The figure consists of alternating light and dark squares. The number of dark squares exceeds the number of light squares by

$\text{(A)}\ 7 \qquad \text{(B)}\ 8 \qquad \text{(C)}\ 9 \qquad \text{(D)}\ 10 \qquad \text{(E)}\ 11$

[asy] unitsize(12); //Force a white background in middle even when transparent fill((3,1)--(12,1)--(12,4)--(3,4)--cycle,white); //Black Squares, Gray Border (blends better than white) for(int a=0; a<7; ++a)  {   filldraw((2a,0)--(2a+1,0)--(2a+1,1)--(2a,1)--cycle,black,gray);  } for(int b=7; b<15; ++b)  {   filldraw((b,14-b)--(b+1,14-b)--(b+1,15-b)--(b,15-b)--cycle,black,gray);  } for(int c=1; c<7; ++c)  {   filldraw((c,c)--(c+1,c)--(c+1,c+1)--(c,c+1)--cycle,black,gray);  } filldraw((6,4)--(7,4)--(7,5)--(6,5)--cycle,black,gray); filldraw((7,5)--(8,5)--(8,6)--(7,6)--cycle,black,gray); filldraw((8,4)--(9,4)--(9,5)--(8,5)--cycle,black,gray); //White Squares, Black Border filldraw((7,4)--(8,4)--(8,5)--(7,5)--cycle,white,black); for(int a=0; a<7; ++a)  {   filldraw((2a+1,0)--(2a+2,0)--(2a+2,1)--(2a+1,1)--cycle,white,black);  } for(int b=9; b<15; ++b)  {   filldraw((b-1,14-b)--(b,14-b)--(b,15-b)--(b-1,15-b)--cycle,white,black);  } for(int c=1; c<7; ++c)  {   filldraw((c+1,c)--(c+2,c)--(c+2,c+1)--(c+1,c+1)--cycle,white,black);  } label("same",(6.3,2.45),N); label("pattern here",(7.5,1.4),N); [/asy]

Problem 5

If $\angle \text{CBD}$ is a right angle, then this protractor indicates that the measure of $\angle \text{ABC}$ is approximately

[asy] unitsize(36); pair A,B,C,D; A=3*dir(160); B=origin; C=3*dir(110); D=3*dir(20); draw((1.5,0)..(0,1.5)..(-1.5,0)); draw((2.5,0)..(0,2.5)..(-2.5,0)--cycle); draw(A--B); draw(C--B); draw(D--B); label("O",(-2.5,0),W); label("A",A,W); label("B",B,S); label("C",C,W); label("D",D,E); label("0",(-1.8,0),W); label("20",(-1.7,.5),NW); label("160",(1.6,.5),NE); label("180",(1.7,0),E); [/asy]

$\text{(A)}\ 20^\circ \qquad \text{(B)}\ 40^\circ \qquad \text{(C)}\ 50^\circ \qquad \text{(D)}\ 70^\circ \qquad \text{(E)}\ 120^\circ$

Problem 6

$\frac{(.2)^3}{(.02)^2} =$

$\text{(A)}\ .2 \qquad \text{(B)}\ 2 \qquad \text{(C)}\ 10 \qquad \text{(D)}\ 15 \qquad \text{(E)}\ 20$

以下是我们为您整理的全英版pdf真题,扫码即可免费领取完整版:

扫码免费预约领取更多AMC历年真题+答案

预约最新真题讲座、课程详情可添加下方顾问老师咨询 

1985年AJHSME 真题及答案

1985年AJHSME 真题:

Problem 1

$\frac{3\times 5}{9\times 11}\times \frac{7\times 9\times 11}{3\times 5\times 7}=$

$\textbf{(A)}\ 1 \qquad \textbf{(B)}\ 0 \qquad \textbf{(C)}\ 49 \qquad \textbf{(D)} \frac{1}{49}\ \qquad \textbf{(E)}\ 50$

Problem 2

$90+91+92+93+94+95+96+97+98+99=$

$\textbf{(A)}\ 845 \qquad \textbf{(B)}\ 945 \qquad \textbf{(C)}\ 1005 \qquad \textbf{(D)}\ 1025 \qquad \textbf{(E)}\ 1045$

Problem 3

$\frac{10^7}{5\times 10^4}=$

$\textbf{(A)}\ .002 \qquad \textbf{(B)}\ .2 \qquad \textbf{(C)}\ 20 \qquad \textbf{(D)}\ 200 \qquad \textbf{(E)}\ 2000$

Problem 4

The area of polygon $ABCDEF$, in square units, is

$\textbf{(A)}\ 24 \qquad \textbf{(B)}\ 30 \qquad \textbf{(C)}\ 46 \qquad \textbf{(D)}\ 66 \qquad \textbf{(E)}\ 74$

[asy] draw((0,9)--(6,9)--(6,0)--(2,0)--(2,4)--(0,4)--cycle); label("$A$",(0,9),NW); label("$B$",(6,9),NE); label("$C$",(6,0),SE); label("$D$",(2,0),SW); label("$E$",(2,4),NE); label("$F$",(0,4),SW); label("6",(3,9),N); label("9",(6,4.5),E); label("4",(4,0),S); label("5",(0,6.5),W); [/asy]

Problem 5

[asy] unitsize(13); draw((0,0)--(20,0)); draw((0,0)--(0,15)); draw((0,3)--(-1,3)); draw((0,6)--(-1,6)); draw((0,9)--(-1,9)); draw((0,12)--(-1,12)); draw((0,15)--(-1,15)); fill((2,0)--(2,15)--(3,15)--(3,0)--cycle,black); fill((4,0)--(4,12)--(5,12)--(5,0)--cycle,black); fill((6,0)--(6,9)--(7,9)--(7,0)--cycle,black); fill((8,0)--(8,9)--(9,9)--(9,0)--cycle,black); fill((10,0)--(10,15)--(11,15)--(11,0)--cycle,black); label("A",(2.5,-.5),S); label("B",(4.5,-.5),S); label("C",(6.5,-.5),S); label("D",(8.5,-.5),S); label("F",(10.5,-.5),S); label("Grade",(15,-.5),S); label("$1$",(-1,3),W); label("$2$",(-1,6),W); label("$3$",(-1,9),W); label("$4$",(-1,12),W); label("$5$",(-1,15),W); [/asy]

The bar graph shows the grades in a mathematics class for the last grading period. If A, B, C, and D are satisfactory grades, what fraction of the grades shown in the graph are satisfactory?

$\textbf{(A)}\ \frac{1}{2} \qquad \textbf{(B)}\ \frac{2}{3} \qquad \textbf{(C)}\ \frac{3}{4} \qquad \textbf{(D)}\ \frac{4}{5} \qquad \textbf{(E)}\ \frac{9}{10}$

Problem 6

A stack of paper containing $500$ sheets is $5$ cm thick. Approximately how many sheets of this type of paper would there be in a stack $7.5$ cm high?

$\textbf{(A)}\ 250 \qquad \textbf{(B)}\ 550 \qquad \textbf{(C)}\ 667 \qquad \textbf{(D)}\ 750 \qquad \textbf{(E)}\ 1250$

以下是我们为您整理的全英版pdf真题,扫码即可免费领取完整版:

扫码免费预约领取更多AMC历年真题+答案

预约最新真题讲座、课程详情可添加下方顾问老师咨询 

1987年AJHSME 真题及答案

1987年AJHSME 真题:

Problem 1

$.4+.02+.006=$

$\text{(A)}\ .012 \qquad \text{(B)}\ .066 \qquad \text{(C)}\ .12 \qquad \text{(D)}\ .24 \qquad \text{(E)} .426$

Problem 2

$\frac{2}{25}=$

$\text{(A)}\ .008 \qquad \text{(B)}\ .08 \qquad \text{(C)}\ .8 \qquad \text{(D)} 1.25 \qquad \text{(E)}\ 12.5$

Problem 3

$2(81+83+85+87+89+91+93+95+97+99)=$

$\text{(A)}\ 1600 \qquad \text{(B)}\ 1650 \qquad \text{(C)}\ 1700 \qquad \text{(D)}\ 1750 \qquad \text{(E)}\ 1800$

Problem 4

Martians measure angles in clerts. There are $500$ clerts in a full circle. How many clerts are there in a right angle?

$\text{(A)}\ 90 \qquad \text{(B)}\ 100 \qquad \text{(C)}\ 125 \qquad \text{(D)}\ 180 \qquad \text{(E)}\ 250$

Problem 5

The area of the rectangular region is

[asy] draw((0,0)--(4,0)--(4,2.2)--(0,2.2)--cycle,linewidth(.5 mm)); label(".22 m",(4,1.1),E); label(".4 m",(2,0),S); [/asy]

$\text{(A)}\ \text{.088 m}^2 \qquad \text{(B)}\ \text{.62 m}^2 \qquad \text{(C)}\ \text{.88 m}^2 \qquad \text{(D)}\ \text{1.24 m}^2 \qquad \text{(E)}\ \text{4.22 m}^2$

Problem 6

The smallest product one could obtain by multiplying two numbers in the set $\{ -7, -5, -1, 1, 3 \}$ is

$\text{(A)}\ -35 \qquad \text{(B)}\ -21 \qquad \text{(C)}\ -15 \qquad \text{(D)}\ -1 \qquad \text{(E)}\ 3$

以下是我们为您整理的全英版pdf真题,扫码即可免费领取完整版:

扫码免费预约领取更多AMC历年真题+答案

预约最新真题讲座、课程详情可添加下方顾问老师咨询 

1986年AJHSME 真题及答案

1986年AJHSME 真题:

Problem 1

In July 1861, $366$ inches of rain fell in Cherrapunji, India. What was the average rainfall in inches per hour during that month?

$\text{(A)}\ \frac{366}{31\times 24} \qquad \text{(B)}\ \frac{366\times 31}{24}\qquad \text{(C)}\ \frac{366\times 24}{31}\qquad \text{(D)}\ \frac{31\times 24}{366}\qquad \text{(E)}\  366\times 31\times 24$

Problem 2

Which of the following numbers has the largest reciprocal?

$\text{(A)}\ \frac{1}{3} \qquad \text{(B)}\ \frac{2}{5} \qquad \text{(C)}\ 1 \qquad \text{(D)}\ 5 \qquad \text{(E)}\ 1986$

Problem 3

The smallest sum one could get by adding three different numbers from the set $\{ 7,25,-1,12,-3 \}$ is

$\text{(A)}\ -3 \qquad \text{(B)}\ -1 \qquad \text{(C)}\ 3 \qquad \text{(D)}\ 5 \qquad \text{(E)}\ 21$

Problem 4

The product $(1.8)(40.3+.07)$ is closest to

$\text{(A)}\ 7 \qquad \text{(B)}\ 42 \qquad \text{(C)}\ 74 \qquad \text{(D)}\ 84 \qquad \text{(E)}\ 737$

Problem 5

A contest began at noon one day and ended $1000$ minutes later. At what time did the contest end?

$\text{(A)}\ \text{10:00 p.m.} \qquad \text{(B)}\ \text{midnight} \qquad \text{(C)}\ \text{2:30 a.m.} \qquad \text{(D)}\ \text{4:40 a.m.} \qquad \text{(E)}\ \text{6:40 a.m.}$

Problem 6

$\frac{2}{1-\frac{2}{3}}=$

$\text{(A)}\ -3 \qquad \text{(B)}\ -\frac{4}{3} \qquad \text{(C)}\ \frac{2}{3} \qquad \text{(D)}\ 2 \qquad \text{(E)}\ 6$

Problem 7

How many whole numbers are between $\sqrt{8}$ and $\sqrt{80}$?

$\text{(A)}\ 5 \qquad \text{(B)}\ 6 \qquad \text{(C)}\ 7 \qquad \text{(D)}\ 8 \qquad \text{(E)}\ 9$

以下是我们为您整理的全英版pdf真题,扫码即可免费领取完整版:

扫码免费预约领取更多AMC历年真题+答案

预约最新真题讲座、课程详情可添加下方顾问老师咨询 

1990年AJHSME 真题及答案

1990年AJHSME 真题:

Problem 1

What is the smallest sum of two $3$-digit numbers that can be obtained by placing each of the six digits $4,5,6,7,8,9$ in one of the six boxes in this addition problem?

[asy] unitsize(12); draw((0,0)--(10,0)); draw((-1.5,1.5)--(-1.5,2.5)); draw((-1,2)--(-2,2)); draw((1,1)--(3,1)--(3,3)--(1,3)--cycle); draw((1,4)--(3,4)--(3,6)--(1,6)--cycle); draw((4,1)--(6,1)--(6,3)--(4,3)--cycle); draw((4,4)--(6,4)--(6,6)--(4,6)--cycle); draw((7,1)--(9,1)--(9,3)--(7,3)--cycle); draw((7,4)--(9,4)--(9,6)--(7,6)--cycle); [/asy]

$\text{(A)}\ 947 \qquad \text{(B)}\ 1037 \qquad \text{(C)}\ 1047 \qquad \text{(D)}\ 1056 \qquad \text{(E)}\ 1245$

Problem 2

Which digit of $.12345$, when changed to $9$, gives the largest number?

$\text{(A)}\ 1 \qquad \text{(B)}\ 2 \qquad \text{(C)}\ 3 \qquad \text{(D)}\ 4 \qquad \text{(E)}\ 5$

Problem 3

What fraction of the square is shaded?

[asy] draw((0,0)--(0,3)--(3,3)--(3,0)--cycle); draw((0,2)--(2,2)--(2,0)); draw((0,1)--(1,1)--(1,0)); draw((0,0)--(3,3)); fill((0,0)--(0,1)--(1,1)--cycle,grey); fill((1,0)--(1,1)--(2,2)--(2,0)--cycle,grey); fill((0,2)--(2,2)--(3,3)--(0,3)--cycle,grey); [/asy]

$\text{(A)}\ \frac{1}{3} \qquad \text{(B)}\ \frac{2}{5} \qquad \text{(C)}\ \frac{5}{12} \qquad \text{(D)}\ \frac{3}{7} \qquad \text{(E)}\ \frac{1}{2}$

Problem 4

Which of the following could not be the unit's digit [one's digit] of the square of a whole number?

$\text{(A)}\ 1 \qquad \text{(B)}\ 4 \qquad \text{(C)}\ 5 \qquad \text{(D)}\ 6 \qquad \text{(E)}\ 8$

Problem 5

Which of the following is closest to the product $(.48017)(.48017)(.48017)$?

$\text{(A)}\ 0.011 \qquad \text{(B)}\ 0.110 \qquad \text{(C)}\ 1.10 \qquad \text{(D)}\ 11.0 \qquad \text{(E)}\ 110$

Problem 6

Which of these five numbers is the largest?

$\text{(A)}\ 13579+\frac{1}{2468} \qquad \text{(B)}\ 13579-\frac{1}{2468} \qquad \text{(C)}\ 13579\times \frac{1}{2468}$

$\text{(D)}\ 13579\div \frac{1}{2468} \qquad \text{(E)}\ 13579.2468$

以下是我们为您整理的全英版pdf真题,扫码即可免费领取完整版:

扫码免费预约领取更多AMC历年真题+答案

预约最新真题讲座、课程详情可添加下方顾问老师咨询 

1991年AJHSME 真题及答案

1991年AJHSME 真题:

Problem 1

$1,000,000,000,000-777,777,777,777=$

$\text{(A)}\ 222,222,222,222 \qquad  \text{(B)}\ 222,222,222,223 \qquad  \text{(C)}\ 233,333,333,333 \qquad \\ \text{(D)}\ 322,222,222,223 \qquad  \text{(E)}\ 333,333,333,333$

Problem 2

$\frac{16+8}{4-2}=$

$\text{(A)}\ 4 \qquad \text{(B)}\ 8 \qquad \text{(C)}\ 12 \qquad \text{(D)}\ 16 \qquad \text{(E)}\ 20$

Problem 3

Two hundred thousand times two hundred thousand equals

$\text{(A)}\ \text{four hundred thousand} \qquad  \text{(B)}\ \text{four million} \qquad  \text{(C)}\ \text{forty thousand} \qquad  \\ \text{(D)}\ \text{four hundred million} \qquad  \text{(E)}\ \text{forty billion}$

Problem 4

If $991+993+995+997+999=5000-N$, then $N=$

$\text{(A)}\ 5 \qquad \text{(B)}\ 10 \qquad \text{(C)}\ 15 \qquad \text{(D)}\ 20 \qquad \text{(E)}\ 25$

Problem 5

A "domino" is made up of two small squares:[asy] unitsize(12); fill((0,0)--(1,0)--(1,1)--(0,1)--cycle,black);  draw((1,1)--(2,1)--(2,0)--(1,0)); [/asy]Which of the "checkerboards" illustrated below CANNOT be covered exactly and completely by a whole number of non-overlapping dominoes?

[asy] unitsize(12); fill((0,0)--(1,0)--(1,1)--(0,1)--cycle,black); fill((1,1)--(1,2)--(2,2)--(2,1)--cycle,black); fill((2,0)--(3,0)--(3,1)--(2,1)--cycle,black); fill((3,1)--(4,1)--(4,2)--(3,2)--cycle,black); fill((0,2)--(1,2)--(1,3)--(0,3)--cycle,black); fill((2,2)--(2,3)--(3,3)--(3,2)--cycle,black); draw((0,0)--(0,3)--(4,3)--(4,0)--cycle); draw((6,0)--(11,0)--(11,3)--(6,3)--cycle); fill((6,0)--(7,0)--(7,1)--(6,1)--cycle,black); fill((8,0)--(9,0)--(9,1)--(8,1)--cycle,black); fill((10,0)--(11,0)--(11,1)--(10,1)--cycle,black); fill((7,1)--(7,2)--(8,2)--(8,1)--cycle,black); fill((9,1)--(9,2)--(10,2)--(10,1)--cycle,black); fill((6,2)--(6,3)--(7,3)--(7,2)--cycle,black); fill((8,2)--(8,3)--(9,3)--(9,2)--cycle,black); fill((10,2)--(10,3)--(11,3)--(11,2)--cycle,black); draw((13,-1)--(13,3)--(17,3)--(17,-1)--cycle); fill((13,3)--(14,3)--(14,2)--(13,2)--cycle,black); fill((15,3)--(16,3)--(16,2)--(15,2)--cycle,black); fill((14,2)--(15,2)--(15,1)--(14,1)--cycle,black); fill((16,2)--(17,2)--(17,1)--(16,1)--cycle,black); fill((13,1)--(14,1)--(14,0)--(13,0)--cycle,black); fill((15,1)--(16,1)--(16,0)--(15,0)--cycle,black); fill((14,0)--(15,0)--(15,-1)--(14,-1)--cycle,black); fill((16,0)--(17,0)--(17,-1)--(16,-1)--cycle,black); draw((19,3)--(24,3)--(24,-1)--(19,-1)--cycle,black); fill((19,3)--(20,3)--(20,2)--(19,2)--cycle,black); fill((21,3)--(22,3)--(22,2)--(21,2)--cycle,black); fill((23,3)--(24,3)--(24,2)--(23,2)--cycle,black); fill((20,2)--(21,2)--(21,1)--(20,1)--cycle,black); fill((22,2)--(23,2)--(23,1)--(22,1)--cycle,black); fill((19,1)--(20,1)--(20,0)--(19,0)--cycle,black); fill((21,1)--(22,1)--(22,0)--(21,0)--cycle,black); fill((23,1)--(24,1)--(24,0)--(23,0)--cycle,black); fill((20,0)--(21,0)--(21,-1)--(20,-1)--cycle,black); fill((22,0)--(23,0)--(23,-1)--(22,-1)--cycle,black); draw((26,3)--(29,3)--(29,-3)--(26,-3)--cycle); fill((26,3)--(27,3)--(27,2)--(26,2)--cycle,black); fill((28,3)--(29,3)--(29,2)--(28,2)--cycle,black); fill((27,2)--(28,2)--(28,1)--(27,1)--cycle,black); fill((26,1)--(27,1)--(27,0)--(26,0)--cycle,black); fill((28,1)--(29,1)--(29,0)--(28,0)--cycle,black); fill((27,0)--(28,0)--(28,-1)--(27,-1)--cycle,black); fill((26,-1)--(27,-1)--(27,-2)--(26,-2)--cycle,black); fill((28,-1)--(29,-1)--(29,-2)--(28,-2)--cycle,black); fill((27,-2)--(28,-2)--(28,-3)--(27,-3)--cycle,black); [/asy]

$\text{(A)}\ 3\times 4 \qquad \text{(B)}\ 3\times 5 \qquad \text{(C)}\ 4\times 4 \qquad \text{(D)}\ 4\times 5 \qquad \text{(E)}\ 6\times 3$

Problem 6

Which number in the array below is both the largest in its column and the smallest in its row? (Columns go up and down, rows go right and left.)\[\begin{tabular}[t]{ccccc} 10 & 6 & 4 & 3 & 2 \\ 11 & 7 & 14 & 10 & 8 \\ 8 & 3 & 4 & 5 & 9 \\ 13 & 4 & 15 & 12 & 1 \\ 8 & 2 & 5 & 9 & 3 \end{tabular}\]

$\text{(A)}\ 1 \qquad \text{(B)}\ 6 \qquad \text{(C)}\ 7 \qquad \text{(D)}\ 12 \qquad \text{(E)}\ 15$

以下是我们为您整理的全英版pdf真题,扫码即可免费领取完整版:

扫码免费预约领取更多AMC历年真题+答案

预约最新真题讲座、课程详情可添加下方顾问老师咨询