2012年AMC 12B 真题及答案

2012年AMC 12B 真题:

Problem 1

Each third-grade classroom at Pearl Creek Elementary has 18 students and 2 pet rabbits. How many more students than rabbits are there in all 4 of the third-grade classrooms?

$\textbf{(A)}\ 48\qquad\textbf{(B)}\ 56\qquad\textbf{(C)}\ 64\qquad\textbf{(D)}\ 72\qquad\textbf{(E)}\ 80$

Problem 2

A circle of radius 5 is inscribed in a rectangle as shown. The ratio of the length of the rectangle to its width is 2:1. What is the area of the rectangle?[asy] draw((0,0)--(0,10)--(20,10)--(20,0)--cycle);  draw(circle((10,5),5));[/asy]$\textbf{(A)}\ 50\qquad\textbf{(B)}\ 100\qquad\textbf{(C)}\ 125\qquad\textbf{(D)}\ 150\qquad\textbf{(E)}\ 200$

Problem 3

For a science project, Sammy observed a chipmunk and squirrel stashing acorns in holes. The chipmunk hid 3 acorns in each of the holes it dug. The squirrel hid 4 acorns in each of the holes it dug. They each hid the same number of acorns, although the squirrel needed 4 fewer holes. How many acorns did the chipmunk hide?

$\textbf{(A)}\ 30\qquad\textbf{(B)}\ 36\qquad\textbf{(C)}\ 42\qquad\textbf{(D)}\ 48\qquad\textbf{(E)}\ 54$

Problem 4

Suppose that the euro is worth 1.30 dollars. If Diana has 500 dollars and Etienne has 400 euros, by what percent is the value of Etienne's money greater that the value of Diana's money?

$\textbf{(A)}\ 2\qquad\textbf{(B)}\ 4\qquad\textbf{(C)}\ 6.5\qquad\textbf{(D)}\ 8\qquad\textbf{(E)}\ 13$

Problem 5

Two integers have a sum of 26. When two more integers are added to the first two, the sum is 41. Finally, when two more integers are added to the sum of the previous 4 integers, the sum is 57. What is the minimum number of even integers among the 6 integers?

$\textbf{(A)}\ 1\qquad\textbf{(B)}\ 2\qquad\textbf{(C)}\ 3\qquad\textbf{(D)}\ 4\qquad\textbf{(E)}\ 5$

Problem 6

In order to estimate the value of $x-y$ where $x$ and $y$ are real numbers with $x > y > 0$, Xiaoli rounded $x$ up by a small amount, rounded $y$ down by the same amount, and then subtracted her rounded values. Which of the following statements is necessarily correct?

$\textbf{(A)}\ \text{Her estimate is larger than }x-y$

$\textbf{(B)}\ \text{Her estimate is smaller than }x-y$

$\textbf{(C)}\ \text{Her estimate equals }x-y$

$\textbf{(D)}\ \text{Her estimate equals }y - x$

$\textbf{(E)}\ \text{Her estimate is 0}$

更多AMC 12 历年真题+真题详解
扫码添加顾问即可免费领取

2012年AMC 12A 真题及答案

2012年AMC 12A 真题:

Problem 1

A bug crawls along a number line, starting at $-2$. It crawls to $-6$, then turns around and crawls to $5$. How many units does the bug crawl altogether?

$\textbf{(A)}\ 9\qquad\textbf{(B)}\ 11\qquad\textbf{(C)}\ 13\qquad\textbf{(D)}\ 14\qquad\textbf{(E)}\ 15$

Problem 2

Cagney can frost a cupcake every $20$ seconds and Lacey can frost a cupcake every $30$ seconds. Working together, how many cupcakes can they frost in $5$ minutes?

$\textbf{(A)}\ 10\qquad\textbf{(B)}\ 15\qquad\textbf{(C)}\ 20\qquad\textbf{(D)}\ 25\qquad\textbf{(E)}\ 30$

Problem 3

A box $2$ centimeters high, $3$ centimeters wide, and $5$ centimeters long can hold $40$ grams of clay. A second box with twice the height, three times the width, and the same length as the first box can hold $n$ grams of clay. What is $n$?

$\textbf{(A)}\ 120\qquad\textbf{(B)}\ 160\qquad\textbf{(C)}\ 200\qquad\textbf{(D)}\ 240\qquad\textbf{(E)}\ 280$

Problem 4

In a bag of marbles, $\tfrac{3}{5}$ of the marbles are blue and the rest are red. If the number of red marbles is doubled and the number of blue marbles stays the same, what fraction of the marbles will be red?

$\textbf{(A)}\ \dfrac{2}{5} \qquad\textbf{(B)}\ \dfrac{3}{7} \qquad\textbf{(C)}\ \dfrac{4}{7} \qquad\textbf{(D)}\ \dfrac{3}{5} \qquad\textbf{(E)}\ \dfrac{4}{5}$

Problem 5

A fruit salad consists of blueberries, raspberries, grapes, and cherries. The fruit salad has a total of $280$ pieces of fruit. There are twice as many raspberries as blueberries, three times as many grapes as cherries, and four times as many cherries as raspberries. How many cherries are there in the fruit salad?

$\textbf{(A)}\ 8\qquad\textbf{(B)}\ 16\qquad\textbf{(C)}\ 25\qquad\textbf{(D)}\ 64\qquad\textbf{(E)}\ 96$

Problem 6

The sums of three whole numbers taken in pairs are $12$$17$, and $19$. What is the middle number?

$\textbf{(A)}\ 4\qquad\textbf{(B)}\ 5\qquad\textbf{(C)}\ 6\qquad\textbf{(D)}\ 7\qquad\textbf{(E)}\ 8$

 

2013年AMC 12B 真题及答案

2013年AMC 12B 真题:

Problem 1

On a particular January day, the high temperature in Lincoln, Nebraska, was $16$ degrees higher than the low temperature, and the average of the high and low temperatures was $3\textdegree$. In degrees, what was the low temperature in Lincoln that day?

$\textbf{(A)}\ -13 \qquad \textbf{(B)}\ -8 \qquad \textbf{(C)}\ -5 \qquad \textbf{(D)}\ -3 \qquad \textbf{(E)}\ 11$

Problem 2

Mr. Green measures his rectangular garden by walking two of the sides and finds that it is $15$ steps by $20$ steps. Each of Mr. Green’s steps is $2$ feet long. Mr. Green expects a half a pound of potatoes per square foot from his garden. How many pounds of potatoes does Mr. Green expect from his garden?

$\textbf{(A)}\ 600 \qquad \textbf{(B)}\ 800 \qquad \textbf{(C)}\ 1000 \qquad \textbf{(D)}\ 1200 \qquad \textbf{(E)}\ 1400$

Problem 3

When counting from $3$ to $201$$53$ is the $51^{\text{st}}$ number counted. When counting backwards from $201$ to $3$$53$ is the $n^{\text{th}}$ number counted. What is $n$?

$\textbf{(A)}\ 146 \qquad \textbf{(B)}\ 147 \qquad \textbf{(C)}\ 148 \qquad \textbf{(D)}\ 149 \qquad \textbf{(E)}\ 150$

Problem 4

Ray's car averages $40$ miles per gallon of gasoline, and Tom's car averages $10$ miles per gallon of gasoline. Ray and Tom each drive the same number of miles. What is the cars' combined rate of miles per gallon of gasoline?

$\textbf{(A)}\ 10 \qquad \textbf{(B)}\ 16 \qquad \textbf{(C)}\ 25 \qquad \textbf{(D)}\ 30 \qquad \textbf{(E)}\ 40$

Problem 5

The average age of $33$ fifth-graders is $11$. The average age of $55$ of their parents is $33$. What is the average age of all of these parents and fifth-graders?

$\textbf{(A)}\ 22 \qquad \textbf{(B)}\ 23.25 \qquad \textbf{(C)}\ 24.75 \qquad \textbf{(D)}\ 26.25 \qquad \textbf{(E)}\ 28$

Problem 6

Real numbers $x$ and $y$ satisfy the equation $x^2 + y^2 = 10x - 6y - 34$. What is $x + y$?

$\textbf{(A)}\ 1 \qquad \textbf{(B)}\ 2 \qquad \textbf{(C)}\ 3 \qquad \textbf{(D)}\ 6 \qquad \textbf{(E)}\ 8$

以下是我们为您整理的中英双语真题试卷,还有全英版真题供您选择
扫码即可免费领取完整版:

更多AMC 12 历年真题+真题详解
扫码添加顾问即可免费领取

2013年AMC 12A 真题及答案

2013年AMC 12A 真题:

Problem 1

Square $ABCD$ has side length $10$. Point $E$ is on $\overline{BC}$, and the area of $\bigtriangleup ABE$ is $40$. What is $BE$?

$\textbf{(A)} \ 4 \qquad \textbf{(B)} \ 5 \qquad \textbf{(C)} \ 6 \qquad \textbf{(D)} \ 7 \qquad \textbf{(E)} \ 8 \qquad$

[asy] pair A,B,C,D,E; A=(0,0); B=(0,50); C=(50,50); D=(50,0); E = (40,50);    draw(A--B);    draw(B--E);    draw(E--C); draw(C--D); draw(D--A); draw(A--E); dot(A); dot(B); dot(C); dot(D); dot(E); label("A",A,SW); label("B",B,NW); label("C",C,NE); label("D",D,SE); label("E",E,N);  [/asy]

Problem 2

A softball team played ten games, scoring $1,2,3,4,5,6,7,8,9$, and $10$ runs. They lost by one run in exactly five games. In each of the other games, they scored twice as many runs as their opponent. How many total runs did their opponents score?

$\textbf {(A) } 35 \qquad \textbf {(B) } 40 \qquad \textbf {(C) } 45 \qquad \textbf {(D) } 50 \qquad \textbf {(E) } 55$

Problem 3

A flower bouquet contains pink roses, red roses, pink carnations, and red carnations. One third of the pink flowers are roses, three fourths of the red flowers are carnations, and six tenths of the flowers are pink. What percent of the flowers are carnations?

$\textbf{(A)}\ 15\qquad\textbf{(B)}\ 30\qquad\textbf{(C)}\ 40\qquad\textbf{(D)}\ 60\qquad\textbf{(E)}\ 70$

Problem 4

What is the value of\[\frac{2^{2014}+2^{2012}}{2^{2014}-2^{2012}}?\]

$\textbf{(A)}\ -1\qquad\textbf{(B)}\ 1\qquad\textbf{(C)}\ \frac{5}{3}\qquad\textbf{(D)}\ 2013\qquad\textbf{(E)}\ 2^{4024}$

Problem 5

Tom, Dorothy, and Sammy went on a vacation and agreed to split the costs evenly. During their trip Tom paid $$105$, Dorothy paid $$125$, and Sammy paid $$175$. In order to share the costs equally, Tom gave Sammy $t$ dollars, and Dorothy gave Sammy $d$ dollars. What is $t-d$?

$\textbf{(A)}\ 15\qquad\textbf{(B)}\ 20\qquad\textbf{(C)}\ 25\qquad\textbf{(D)}\ 30\qquad\textbf{(E)}\ 35$

Problem 6

In a recent basketball game, Shenille attempted only three-point shots and two-point shots. She was successful on $20\%$ of her three-point shots and $30\%$ of her two-point shots. Shenille attempted $30$ shots. How many points did she score?

$\textbf{(A)}\ 12\qquad\textbf{(B)}\ 18\qquad\textbf{(C)}\ 24\qquad\textbf{(D)}\ 30\qquad\textbf{(E)}\ 36$

以下是我们为您整理的中英双语真题试卷,还有全英版真题供您选择
扫码即可免费领取完整版:

更多AMC 12 历年真题+真题详解
扫码添加顾问即可免费领取

2015年AMC 12B 真题及答案

2015年AMC 12B 真题:

Problem 1

What is the value of $2-(-2)^{-2}$ ?

$\textbf{(A)}\; -2 \qquad\textbf{(B)}\; \dfrac{1}{16} \qquad\textbf{(C)}\; \dfrac{7}{4} \qquad\textbf{(D)}\; \dfrac{9}{4} \qquad\textbf{(E)}\; 6$

Problem 2

Marie does three equally time-consuming tasks in a row without taking breaks. She begins the first task at 1:00 PM and finishes the second task at 2:40 PM. When does she finish the third task?

$\textbf{(A)}\; \text{3:10 PM} \qquad\textbf{(B)}\; \text{3:30 PM} \qquad\textbf{(C)}\; \text{4:00 PM} \qquad\textbf{(D)}\; \text{4:10 PM} \qquad\textbf{(E)}\; \text{4:30 PM}$

Problem 3

Isaac has written down one integer two times and another integer three times. The sum of the five numbers is 100, and one of the numbers is 28. What is the other number?

$\textbf{(A)}\; 8 \qquad\textbf{(B)}\; 11 \qquad\textbf{(C)}\; 14 \qquad\textbf{(D)}\; 15 \qquad\textbf{(E)}\; 18$

Problem 4

David, Hikmet, Jack, Marta, Rand, and Todd were in a 12-person race with 6 other people. Rand finished 6 places ahead of Hikmet. Marta finished 1 place behind Jack. David finished 2 places behind Hikmet. Jack finished 2 places behind Todd. Todd finished 1 place behind Rand. Marta finished in 6th place. Who finished in 8th place?

$\textbf{(A)}\; \text{David} \qquad\textbf{(B)}\; \text{Hikmet} \qquad\textbf{(C)}\; \text{Jack} \qquad\textbf{(D)}\; \text{Rand} \qquad\textbf{(E)}\; \text{Todd}$

Problem 5

The Tigers beat the Sharks 2 out of the 3 times they played. They then played $N$ more times, and the Sharks ended up winning at least 95% of all the games played. What is the minimum possible value for $N$?

$\textbf{(A)}\; 35 \qquad  \textbf{(B)}\; 37 \qquad \textbf{(C)}\; 39 \qquad \textbf{(D)}\; 41 \qquad \textbf{(E)}\; 43$

Problem 6

Back in 1930, Tillie had to memorize her multiplication facts from $0 \times 0$ to $12 \times 12$. The multiplication table she was given had rows and columns labeled with the factors, and the products formed the body of the table. To the nearest hundredth, what fraction of the numbers in the body of the table are odd?

$\textbf{(A)}\; 0.21 \qquad\textbf{(B)}\; 0.25 \qquad\textbf{(C)}\; 0.46 \qquad\textbf{(D)}\; 0.50 \qquad\textbf{(E)}\; 0.75$

以下是我们为您整理的中英双语真题试卷,还有全英版真题供您选择
扫码即可免费领取完整版:

更多AMC 12 历年真题+真题详解
扫码添加顾问即可免费领取

 

2014年AMC 12A 真题及答案

2014年AMC 12A 真题:

Problem 1

What is $10 \cdot \left(\tfrac{1}{2} + \tfrac{1}{5} + \tfrac{1}{10}\right)^{-1}?$

$\textbf{(A)}\ 3\qquad\textbf{(B)}\ 8\qquad\textbf{(C)}\ \frac{25}{2}\qquad\textbf{(D)}\ \frac{170}{3}\qquad\textbf{(E)}\ 170$

Problem 2

At the theater children get in for half price. The price for $5$ adult tickets and $4$ child tickets is $24.50$. How much would $8$ adult tickets and $6$ child tickets cost?

$\textbf{(A) }35\qquad \textbf{(B) }38.50\qquad \textbf{(C) }40\qquad \textbf{(D) }42\qquad \textbf{(E) }42.50$

Problem 3

Walking down Jane Street, Ralph passed four houses in a row, each painted a different color. He passed the orange house before the red house, and he passed the blue house before the yellow house. The blue house was not next to the yellow house. How many orderings of the colored houses are possible?

$\textbf{(A)}\ 2\qquad\textbf{(B)}\ 3\qquad\textbf{(C)}\ 4\qquad\textbf{(D)}\ 5\qquad\textbf{(E)}\ 6$

Problem 4

Suppose that $a$ cows give $b$ gallons of milk in $c$ days. At this rate, how many gallons of milk will $d$ cows give in $e$ days?

$\textbf{(A)}\ \frac{bde}{ac}\qquad\textbf{(B)}\ \frac{ac}{bde}\qquad\textbf{(C)}\ \frac{abde}{c}\qquad\textbf{(D)}\ \frac{bcde}{a}\qquad\textbf{(E)}\ \frac{abc}{de}$

Problem 5

On an algebra quiz, $10\%$ of the students scored $70$ points, $35\%$ scored $80$ points, $30\%$ scored $90$ points, and the rest scored $100$ points. What is the difference between the mean and median score of the students' scores on this quiz?

$\textbf{(A)}\ 1\qquad\textbf{(B)}\ 2\qquad\textbf{(C)}\ 3\qquad\textbf{(D)}\ 4\qquad\textbf{(E)}\ 5$

Problem 6

The difference between a two-digit number and the number obtained by reversing its digits is $5$ times the sum of the digits of either number. What is the sum of the two digit number and its reverse?

$\textbf{(A) }44\qquad \textbf{(B) }55\qquad \textbf{(C) }77\qquad \textbf{(D) }99\qquad \textbf{(E) }110$

以下是我们为您整理的中英双语真题试卷,还有全英版真题供您选择
扫码即可免费领取完整版:

更多AMC 12 历年真题+真题详解
扫码添加顾问即可免费领取

2014年AMC 12B 真题及答案

2014年AMC 12B 真题:

Problem 1

Leah has $13$ coins, all of which are pennies and nickels. If she had one more nickel than she has now, then she would have the same number of pennies and nickels. In cents, how much are Leah's coins worth?

$\textbf{(A)}\ 33\qquad\textbf{(B)}\ 35\qquad\textbf{(C)}\ 37\qquad\textbf{(D)}\ 39\qquad\textbf{(E)}\ 41$

Problem 2

Orvin went to the store with just enough money to buy $30$ balloons. When he arrived he discovered that the store had a special sale on balloons: buy $1$ balloon at the regular price and get a second at $\frac{1}{3}$ off the regular price. What is the greatest number of balloons Orvin could buy?

$\textbf{(A)}\ 33\qquad\textbf{(B)}\ 34\qquad\textbf{(C)}\ 36\qquad\textbf{(D)}\ 38\qquad\textbf{(E)}\ 39$

Problem 3

Randy drove the first third of his trip on a gravel road, the next $20$ miles on pavement, and the remaining one-fifth on a dirt road. In miles, how long was Randy's trip?

$\textbf{(A)}\ 30\qquad\textbf{(B)}\ \frac{400}{11}\qquad\textbf{(C)}\ \frac{75}{2}\qquad\textbf{(D)}\ 40\qquad\textbf{(E)}\ \frac{300}{7}$

Problem 4

Susie pays for $4$ muffins and $3$ bananas. Calvin spends twice as much paying for $2$ muffins and $16$ bananas. A muffin is how many times as expensive as a banana?

$\textbf{(A)}\ \frac{3}{2}\qquad\textbf{(B)}\ \frac{5}{3}\qquad\textbf{(C)}\ \frac{7}{4}\qquad\textbf{(D)}\ 2\qquad\textbf{(E)}\ \frac{13}{4}$

Problem 5

Doug constructs a square window using $8$ equal-size panes of glass, as shown. The ratio of the height to width for each pane is $5 : 2$, and the borders around and between the panes are $2$ inches wide. In inches, what is the side length of the square window?[asy] fill((0,0)--(2,0)--(2,26)--(0,26)--cycle,gray); fill((6,0)--(8,0)--(8,26)--(6,26)--cycle,gray); fill((12,0)--(14,0)--(14,26)--(12,26)--cycle,gray); fill((18,0)--(20,0)--(20,26)--(18,26)--cycle,gray); fill((24,0)--(26,0)--(26,26)--(24,26)--cycle,gray); fill((0,0)--(26,0)--(26,2)--(0,2)--cycle,gray); fill((0,12)--(26,12)--(26,14)--(0,14)--cycle,gray); fill((0,24)--(26,24)--(26,26)--(0,26)--cycle,gray); [/asy]$\textbf{(A)}\ 26\qquad\textbf{(B)}\ 28\qquad\textbf{(C)}\ 30\qquad\textbf{(D)}\ 32\qquad\textbf{(E)}\ 34$

Problem 6

Ed and Ann both have lemonade with their lunch. Ed orders the regular size. Ann gets the large lemonade, which is 50% more than the regular. After both consume $\frac{3}{4}$ of their drinks, Ann gives Ed a third of what she has left, and 2 additional ounces. When they finish their lemonades they realize that they both drank the same amount. How many ounces of lemonade did they drink together?

$\textbf{(A)}\ 30\qquad\textbf{(B)}\ 32\qquad\textbf{(C)}\ 36\qquad\textbf{(D)}\ 40\qquad\textbf{(E)}\ 50$

以下是我们为您整理的中英双语真题试卷,还有全英版真题供您选择
扫码即可免费领取完整版:

更多AMC 12 历年真题+真题详解
扫码添加顾问即可免费领取

2015年AMC 12A 真题及答案

2015年AMC 12A 真题:

Problem 1

What is the value of $(2^0-1+5^2-0)^{-1}\times5?$

$\textbf{(A)}\ -125\qquad\textbf{(B)}\ -120\qquad\textbf{(C)}\ \frac{1}{5}\qquad\textbf{(D)}\ \frac{5}{24}\qquad\textbf{(E)}\ 25$

Problem 2

Two of the three sides of a triangle are 20 and 15. Which of the following numbers is not a possible perimeter of the triangle?

$\textbf{(A)}\ 52\qquad\textbf{(B)}\ 57\qquad\textbf{(C)}\ 62\qquad\textbf{(D)}\ 67\qquad\textbf{(E)}\ 72$

Problem 3

Mr. Patrick teaches math to 15 students. He was grading tests and found that when he graded everyone's test except Payton's, the average grade for the class was 80. After he graded Payton's test, the class average became 81. What was Payton's score on the test?

$\textbf{(A)}\ 81\qquad\textbf{(B)}\ 85\qquad\textbf{(C)}\ 91\qquad\textbf{(D)}\ 94\qquad\textbf{(E)}\ 95$

Problem 4

The sum of two positive numbers is 5 times their difference. What is the ratio of the larger number to the smaller?

$\textbf{(A)}\ \frac54 \qquad\textbf{(B)}\ \frac32 \qquad\textbf{(C)}\ \frac95 \qquad\textbf{(D)}\ 2 \qquad\textbf{(E)}\ \frac52$

Problem 5

Amelia needs to estimate the quantity $\frac{a}{b} - c$, where $a, b,$ and $c$ are large positive integers. She rounds each of the integers so that the calculation will be easier to do mentally. In which of these situations will her answer necessarily be greater than the exact value of $\frac{a}{b} - c$?

$\textbf{(A)}\ \text{She rounds all three numbers up.}\\ \qquad\textbf{(B)}\ \text{She rounds } a \text{ and } b \text{ up, and she rounds } c \text{ down.}\\ \qquad\textbf{(C)}\ \text{She rounds } a \text{ and } c \text{ up, and she rounds } b \text{ down.} \\ \qquad\textbf{(D)}\ \text{She rounds } a \text{ up, and she rounds } b \text{ and } c \text{ down.}\\ \qquad\textbf{(E)}\ \text{She rounds } c \text{ up, and she rounds } a \text{ and } b \text{ down.}$

Problem 6

Two years ago Pete was three times as old as his cousin Claire. Two years before that, Pete was four times as old as Claire. In how many years will the ratio of their ages be $2 : 1$?

$\textbf{(A)}\ 2 \qquad\textbf{(B)}\ 4 \qquad\textbf{(C)}\ 5 \qquad\textbf{(D)}\ 6 \qquad\textbf{(E)}\ 8$

以下是我们为您整理的中英双语真题试卷,还有全英版真题供您选择
扫码即可免费领取完整版:

更多AMC 12 历年真题+真题详解
扫码添加顾问即可免费领取

2016年AMC 12B 真题及答案

2016年AMC 12B 真题:

Problem 1

What is the value of $\frac{2a^{-1}+\frac{a^{-1}}{2}}{a}$ when $a= -\frac{1}{2}$?

$\textbf{(A)}\ 1\qquad\textbf{(B)}\ 2\qquad\textbf{(C)}\ \frac{5}{2}\qquad\textbf{(D)}\ 10\qquad\textbf{(E)}\ 20$

Problem 2

The harmonic mean of two numbers can be calculated as twice their product divided by their sum. The harmonic mean of $1$ and $2016$ is closest to which integer?

$\textbf{(A)}\ 2 \qquad \textbf{(B)}\ 45 \qquad \textbf{(C)}\ 504 \qquad \textbf{(D)}\ 1008 \qquad \textbf{(E)}\ 2015$

Problem 3

Let $x=-2016$. What is the value of $\bigg|$ $||x|-x|-|x|$ $\bigg|$ $-x$?

$\textbf{(A)}\ -2016\qquad\textbf{(B)}\ 0\qquad\textbf{(C)}\ 2016\qquad\textbf{(D)}\ 4032\qquad\textbf{(E)}\ 6048$

Problem 4

The ratio of the measures of two acute angles is $5:4$, and the complement of one of these two angles is twice as large as the complement of the other. What is the sum of the degree measures of the two angles?

$\textbf{(A)}\ 75\qquad\textbf{(B)}\ 90\qquad\textbf{(C)}\ 135\qquad\textbf{(D)}\ 150\qquad\textbf{(E)}\ 270$

Problem 5

The War of $1812$ started with a declaration of war on Thursday, June $18$$1812$. The peace treaty to end the war was signed $919$ days later, on December $24$$1814$. On what day of the week was the treaty signed?

$\textbf{(A)}\ \text{Friday} \qquad \textbf{(B)}\ \text{Saturday} \qquad \textbf{(C)}\ \text{Sunday} \qquad \textbf{(D)}\ \text{Monday} \qquad \textbf{(E)}\ \text{Tuesday}$

Problem 6

All three vertices of $\bigtriangleup ABC$ lie on the parabola defined by $y=x^2$, with $A$ at the origin and $\overline{BC}$ parallel to the $x$-axis. The area of the triangle is $64$. What is the length of $BC$?

$\textbf{(A)}\ 4\qquad\textbf{(B)}\ 6\qquad\textbf{(C)}\ 8\qquad\textbf{(D)}\ 10\qquad\textbf{(E)}\ 16$

以下是我们为您整理的中英双语真题试卷,还有全英版真题供您选择
扫码即可免费领取完整版:

更多AMC 12 历年真题+真题详解
扫码添加顾问即可免费领取

2016年AMC 12A 真题及答案

2016年AMC 12A 真题:

Problem 1

What is the value of $\frac{11!-10!}{9!}$?

$\textbf{(A)}\ 99\qquad\textbf{(B)}\ 100\qquad\textbf{(C)}\ 110\qquad\textbf{(D)}\ 121\qquad\textbf{(E)}\ 132$

Problem 2

For what value of $x$ does $10^x \cdot 100^{2x} = 1000^5$?

$\textbf{(A)}\ 1\qquad\textbf{(B)}\ 2\qquad\textbf{(C)}\ 3\qquad\textbf{(D)}\ 4\qquad\textbf{(E)}\ 5$

Problem 3

The remainder can be defined for all real numbers $x$ and $y$ with $y \neq 0$ by\[\text{rem} (x ,y)=x-y\left \lfloor \frac{x}{y} \right \rfloor\]where $\left \lfloor \tfrac{x}{y} \right \rfloor$ denotes the greatest integer less than or equal to $\tfrac{x}{y}$. What is the value of $\text{rem} (\tfrac{3}{8}, -\tfrac{2}{5} )$?

$\textbf{(A) } -\frac{3}{8} \qquad \textbf{(B) } -\frac{1}{40} \qquad \textbf{(C) } 0 \qquad \textbf{(D) } \frac{3}{8} \qquad \textbf{(E) } \frac{31}{40}$

Problem 4

The mean, median, and mode of the $7$ data values $60, 100, x, 40, 50, 200, 90$ are all equal to $x$. What is the value of $x$?

$\textbf{(A)}\ 50\qquad\textbf{(B)}\ 60\qquad\textbf{(C)}\ 75\qquad\textbf{(D)}\ 90\qquad\textbf{(E)}\ 100$

Problem 5

Goldbach's conjecture states that every even integer greater than 2 can be written as the sum of two prime numbers (for example, $2016=13+2003$). So far, no one has been able to prove that the conjecture is true, and no one has found a counterexample to show that the conjecture is false. What would a counterexample consist of?

$\textbf{(A)}\ \text{an odd integer greater than } 2 \text{ that can be written as the sum of two prime numbers}\\ \qquad\textbf{(B)}\ \text{an odd integer greater than } 2 \text{ that cannot be written as the sum of two prime numbers}\\ \qquad\textbf{(C)}\ \text{an even integer greater than } 2 \text{ that can be written as the sum of two numbers that are not prime}\\ \qquad\textbf{(D)}\ \text{an even integer greater than } 2 \text{ that can be written as the sum of two prime numbers}\\ \qquad\textbf{(E)}\ \text{an even integer greater than } 2 \text{ that cannot be written as the sum of two prime numbers}$

Problem 6

A triangular array of $2016$ coins has $1$ coin in the first row, $2$ coins in the second row, $3$ coins in the third row, and so on up to $N$ coins in the $N$th row. What is the sum of the digits of $N$ ?

$\textbf{(A)}\ 6\qquad\textbf{(B)}\ 7\qquad\textbf{(C)}\ 8\qquad\textbf{(D)}\ 9\qquad\textbf{(E)}\ 10$

以下是我们为您整理的中英双语真题试卷,还有全英版真题供您选择
扫码即可免费领取完整版:

更多AMC 12 历年真题+真题详解
扫码添加顾问即可免费领取