2019年AIME II 真题:
Problem 1
Two different points, and
, lie on the same side of line
so that
and
are congruent with
, and
. The intersection of these two triangular regions has area
, where
and
are relatively prime positive integers. Find
.
Problem 2
Lily pads lie in a row on a pond. A frog makes a sequence of jumps starting on pad
. From any pad
the frog jumps to either pad
or pad
chosen randomly with probability
and independently of other jumps. The probability that the frog visits pad
is
, where
and
are relatively prime positive integers. Find
.
Problem 3
Find the number of -tuples of positive integers
that satisfy the following system of equations:
Problem 4
A standard six-sided fair die is rolled four times. The probability that the product of all four numbers rolled is a perfect square is , where
and
are relatively prime positive integers. Find
.
Problem 5
Four ambassadors and one advisor for each of them are to be seated at a round table with chairs numbered in order
to
. Each ambassador must sit in an even-numbered chair. Each advisor must sit in a chair adjacent to his or her ambassador. There are
ways for the
people to be seated at the table under these conditions. Find the remainder when
is divided by
.
Problem 6
In a Martian civilization, all logarithms whose bases are not specified as assumed to be base , for some fixed
. A Martian student writes down
and finds that this system of equations has a single real number solution
. Find
.
以下是我们为您整理的真题试卷,扫码即可免费领取完整版:
更多AIME 历年真题+真题详解
扫码添加顾问即可免费领取