2021年AMC 12A(2月份) 真题及答案

2021年AMC 12A(2月份)真题:

Problem 1

What is the value of\[2^{1+2+3}-(2^1+2^2+2^3)?\]$\textbf{(A) }0 \qquad \textbf{(B) }50 \qquad \textbf{(C) }52 \qquad \textbf{(D) }54 \qquad \textbf{(E) }57$

Problem 2

Under what conditions is $\sqrt{a^2+b^2}=a+b$ true, where $a$ and $b$ are real numbers?

$\textbf{(A) }$ It is never true.

$\textbf{(B) }$ It is true if and only if $ab=0$.

$\textbf{(C) }$ It is true if and only if $a+b\ge 0$.

$\textbf{(D) }$ It is true if and only if $ab=0$ and $a+b\ge 0$.

$\textbf{(E) }$ It is always true.

Problem 3

The sum of two natural numbers is $17{,}402$. One of the two numbers is divisible by $10$. If the units digit of that number is erased, the other number is obtained. What is the difference of these two numbers?

$\textbf{(A)} ~10{,}272\qquad\textbf{(B)} ~11{,}700\qquad\textbf{(C)} ~13{,}362\qquad\textbf{(D)} ~14{,}238\qquad\textbf{(E)} ~15{,}426$

Problem 4

Tom has a collection of $13$ snakes, $4$ of which are purple and $5$ of which are happy. He observes that

  • all of his happy snakes can add,
  • none of his purple snakes can subtract, and
  • all of his snakes that can't subtract also can't add.

Which of these conclusions can be drawn about Tom's snakes?

$\textbf{(A) }$ Purple snakes can add.

$\textbf{(B) }$ Purple snakes are happy.

$\textbf{(C) }$ Snakes that can add are purple.

$\textbf{(D) }$ Happy snakes are not purple.

$\textbf{(E) }$ Happy snakes can't subtract.

Problem 5

When a student multiplied the number $66$ by the repeating decimal,\[\underline{1}.\underline{a} \ \underline{b} \ \underline{a} \ \underline{b}\ldots=\underline{1}.\overline{\underline{a} \ \underline{b}},\]where $a$ and $b$ are digits, he did not notice the notation and just multiplied $66$ times $\underline{1}.\underline{a} \ \underline{b}.$ Later he found that his answer is $0.5$ less than the correct answer. What is the $2$-digit number $\underline{a} \ \underline{b}?$

$\textbf{(A) }15 \qquad \textbf{(B) }30 \qquad \textbf{(C) }45 \qquad \textbf{(D) }60 \qquad \textbf{(E) }75$

Problem 6

A deck of cards has only red cards and black cards. The probability of a randomly chosen card being red is $\frac13$. When $4$ black cards are added to the deck, the probability of choosing red becomes $\frac14$. How many cards were in the deck originally?

$\textbf{(A) }6 \qquad \textbf{(B) }9 \qquad \textbf{(C) }12 \qquad \textbf{(D) }15 \qquad \textbf{(E) }18$

以下是我们为您整理的中英双语真题试卷,还有全英版真题供您选择
扫码即可免费领取完整版:

更多AMC 12 历年真题+真题详解
扫码添加顾问即可免费领取

2021年AMC 12B(2月份) 真题及答案

2021年AMC 12B(2月份)真题:

Problem 1

How many integer values of $x$ satisfy $|x|<3\pi?$

$\textbf{(A) }9 \qquad \textbf{(B) }10 \qquad \textbf{(C) }18 \qquad \textbf{(D) }19 \qquad \textbf{(E) }20$

Problem 2

At a math contest, $57$ students are wearing blue shirts, and another $75$ students are wearing yellow shirts. The $132$ students are assigned into $66$ pairs. In exactly $23$ of these pairs, both students are wearing blue shirts. In how many pairs are both students wearing yellow shirts?

$\textbf{(A) }23 \qquad \textbf{(B) }32 \qquad \textbf{(C) }37 \qquad \textbf{(D) }41 \qquad \textbf{(E) }64$

Problem 3

Suppose\[2+\frac{1}{1+\frac{1}{2+\frac{2}{3+x}}}=\frac{144}{53}.\]What is the value of $x?$

$\textbf{(A) }\frac34 \qquad \textbf{(B) }\frac78 \qquad \textbf{(C) }\frac{14}{15} \qquad \textbf{(D) }\frac{37}{38} \qquad \textbf{(E) }\frac{52}{53}$

Problem 4

Ms. Blackwell gives an exam to two classes. The mean of the scores of the students in the morning class is $84$, and the afternoon class's mean score is $70$. The ratio of the number of students in the morning class to the number of students in the afternoon class is $\frac34$. What is the mean of the score of all the students?

$\textbf{(A) }74 \qquad \textbf{(B) }75 \qquad \textbf{(C) }76 \qquad \textbf{(D) }77 \qquad \textbf{(E) }78$

Problem 5

The point $P(a,b)$ in the $xy$-plane is first rotated counterclockwise by $90^\circ$ around the point $(1,5)$ and then reflected about the line $y=-x$. The image of $P$ after these two transformations is at $(-6,3)$. What is $b-a?$

$\textbf{(A) }1 \qquad \textbf{(B) }3 \qquad \textbf{(C) }5 \qquad \textbf{(D) }7 \qquad \textbf{(E) }9$

Problem 6

An inverted cone with base radius $12 \text{cm}$ and height $18\text{cm}$ is full of water. The water is poured into a tall cylinder whose horizontal base has a radius of $24\text{cm}$. What is the height in centimeters of the water in the cylinder?

$\textbf{(A) }1.5 \qquad \textbf{(B) }3 \qquad \textbf{(C) }4 \qquad \textbf{(D) }4.5 \qquad \textbf{(E) }6$

以下是我们为您整理的中英双语真题试卷,还有全英版真题供您选择
扫码即可免费领取完整版:

更多AMC 12 历年真题+真题详解
扫码添加顾问即可免费领取

2016年AMC 10A 真题及答案

2016年AMC 10A 真题:

Problem 1

What is the value of $\dfrac{11!-10!}{9!}$?

$\textbf{(A)}\ 99\qquad\textbf{(B)}\ 100\qquad\textbf{(C)}\ 110\qquad\textbf{(D)}\ 121\qquad\textbf{(E)}\ 132$

Problem 2

For what value $x$ does $10^{x}\cdot 100^{2x}=1000^{5}$?

$\textbf{(A)}\ 1 \qquad\textbf{(B)}\ 2\qquad\textbf{(C)}\ 3\qquad\textbf{(D)}\ 4\qquad\textbf{(E)}\ 5$

Problem 3

For every dollar Ben spent on bagels, David spent $25$ cents less. Ben paid $$12.50$ more than David. How much did they spend in the bagel store together?

$\textbf{(A)}\ $37.50 \qquad\textbf{(B)}\ $50.00\qquad\textbf{(C)}\ $87.50\qquad\textbf{(D)}\ $90.00\qquad\textbf{(E)}\ $92.50$

Problem 4

The remainder can be defined for all real numbers $x$ and $y$ with $y \neq 0$ by\[\text{rem} (x ,y)=x-y\left \lfloor \frac{x}{y} \right \rfloor\]where $\left \lfloor \dfrac{x}{y} \right \rfloor$ denotes the greatest integer less than or equal to $\dfrac{x}{y}$. What is the value of $\text{rem}\left(\dfrac{3}{8}, -\dfrac{2}{5}\right)$?

$\textbf{(A) } -\frac{3}{8} \qquad \textbf{(B) } -\frac{1}{40} \qquad \textbf{(C) } 0 \qquad \textbf{(D) } \frac{3}{8} \qquad \textbf{(E) } \frac{31}{40}$

Problem 5

A rectangular box has integer side lengths in the ratio $1: 3: 4$. Which of the following could be the volume of the box?

$\textbf{(A)}\ 48\qquad\textbf{(B)}\ 56\qquad\textbf{(C)}\ 64\qquad\textbf{(D)}\ 96\qquad\textbf{(E)}\ 144$

Problem 6

Ximena lists the whole numbers $1$ through $30$ once. Emilio copies Ximena's numbers, replacing each occurrence of the digit $2$ by the digit $1$. Ximena adds her numbers and Emilio adds his numbers. How much larger is Ximena's sum than Emilio's?

$\textbf{(A)}\ 13\qquad\textbf{(B)}\ 26\qquad\textbf{(C)}\ 102\qquad\textbf{(D)}\ 103\qquad\textbf{(E)}\ 110$

以下是我们为您整理的中英双语真题试卷,还有全英版真题供您选择
扫码即可免费领取完整版:

更多AMC 10 历年真题+真题详解
扫码添加顾问即可免费领取

2015年AMC 10A 真题及答案

2015年AMC 10A 真题:

Problem 1

What is the value of $(2^0-1+5^2+0)^{-1}\times5?$

$\textbf{(A)}\ -125\qquad\textbf{(B)}\ -120\qquad\textbf{(C)}\ \frac{1}{5}\qquad\textbf{(D)}\ \frac{5}{24}\qquad\textbf{(E)}\ 25$

Problem 2

A box contains a collection of triangular and square tiles. There are $25$ tiles in the box, containing $84$ edges total. How many square tiles are there in the box?

$\textbf{(A)}\ 3\qquad\textbf{(B)}\ 5\qquad\textbf{(C)}\ 7\qquad\textbf{(D)}\ 9\qquad\textbf{(E)}\ 11$

Problem 3

Ann made a 3-step staircase using 18 toothpicks as shown in the figure. How many toothpicks does she need to add to complete a 5-step staircase?

[asy] unitsize(40); for(int i=0; i<3; i+=1) { draw((0,i+0.05)--(0,i+0.95)); draw((i+0.05,0)--(i+0.95,0)); for(int j=0; j<3-i; j+=1) { draw((i+1,j+0.05)--(i+1,j+0.95)); draw((i+0.05,j+1)--(i+0.95,j+1)); } } [/asy]

$\textbf{(A)}\ 9\qquad\textbf{(B)}\ 18\qquad\textbf{(C)}\ 20\qquad\textbf{(D)}\ 22\qquad\textbf{(E)}\ 24$

Problem 4

Pablo, Sofia, and Mia got some candy eggs at a party. Pablo had three times as many eggs as Sofia, and Sofia had twice as many eggs as Mia. Pablo decides to give some of his eggs to Sofia and Mia so that all three will have the same number of eggs. What fraction of his eggs should Pablo give to Sofia?

$\textbf{(A)}\ \frac{1}{12}\qquad\textbf{(B)}\ \frac{1}{6}\qquad\textbf{(C)}\ \frac{1}{4}\qquad\textbf{(D)}\ \frac{1}{3}\qquad\textbf{(E)}\ \frac{1}{2}$

Problem 5

Mr. Patrick teaches math to $15$ students. He was grading tests and found that when he graded everyone's test except Payton's, the average grade for the class was $80$. After he graded Payton's test, the test average became $81$. What was Payton's score on the test?

$\textbf{(A)}\ 81\qquad\textbf{(B)}\ 85\qquad\textbf{(C)}\ 91\qquad\textbf{(D)}\ 94\qquad\textbf{(E)}\ 95$

Problem 6

The sum of two positive numbers is $5$ times their difference. What is the ratio of the larger number to the smaller number?

$\textbf{(A)}\ \frac{5}{4}\qquad\textbf{(B)}\ \frac{3}{2}\qquad\textbf{(C)}\ \frac{9}{5}\qquad\textbf{(D)}\ 2 \qquad\textbf{(E)}\ \frac{5}{2}$

以下是我们为您整理的中英双语真题试卷,还有全英版真题供您选择
扫码即可免费领取完整版:

更多AMC 10 历年真题+真题详解
扫码添加顾问即可免费领取

2014年AMC 10A 真题及答案

2014年AMC 10A 真题:

Problem 1

What is $10 \cdot \left(\tfrac{1}{2} + \tfrac{1}{5} + \tfrac{1}{10}\right)^{-1}?$

$\textbf{(A)}\ 3\qquad\textbf{(B)}\ 8\qquad\textbf{(C)}\ \frac{25}{2}\qquad\textbf{(D)}\ \frac{170}{3}\qquad\textbf{(E)}\ 170$

Problem 2

Roy's cat eats $\frac{1}{3}$ of a can of cat food every morning and $\frac{1}{4}$ of a can of cat food every evening. Before feeding his cat on Monday morning, Roy opened a box containing $6$ cans of cat food. On what day of the week did the cat finish eating all the cat food in the box?

$\textbf{(A)}\ \text{Tuesday}\qquad\textbf{(B)}\ \text{Wednesday}\qquad\textbf{(C)}\ \text{Thursday}\qquad\textbf{(D)}\ \text{Friday}\qquad\textbf{(E)}\ \text{Saturday}$

Problem 3

Bridget bakes 48 loaves of bread for her bakery. She sells half of them in the morning for $\textdollar 2.50$ each. In the afternoon she sells two thirds of what she has left, and because they are not fresh, she charges only half price. In the late afternoon she sells the remaining loaves at a dollar each. Each loaf costs $\textdollar 0.75$ for her to make. In dollars, what is her profit for the day?

$\textbf{(A)}\ 24\qquad\textbf{(B)}\ 36\qquad\textbf{(C)}\ 44\qquad\textbf{(D)}\ 48\qquad\textbf{(E)}\ 52$

Problem 4

Walking down Jane Street, Ralph passed four houses in a row, each painted a different color. He passed the orange house before the red house, and he passed the blue house before the yellow house. The blue house was not next to the yellow house. How many orderings of the colored houses are possible?

$\textbf{(A)}\ 2\qquad\textbf{(B)}\ 3\qquad\textbf{(C)}\ 4\qquad\textbf{(D)}\ 5\qquad\textbf{(E)}\ 6$

Problem 5

On an algebra quiz, $10\%$ of the students scored $70$ points, $35\%$ scored $80$ points, $30\%$ scored $90$ points, and the rest scored $100$ points. What is the difference between the mean and median score of the students' scores on this quiz?

$\textbf{(A)}\ 1\qquad\textbf{(B)}\ 2\qquad\textbf{(C)}\ 3\qquad\textbf{(D)}\ 4\qquad\textbf{(E)}\ 5$

Problem 6

Suppose that $a$ cows give $b$ gallons of milk in $c$ days. At this rate, how many gallons of milk will $d$ cows give in $e$ days?

$\textbf{(A)}\ \frac{bde}{ac}\qquad\textbf{(B)}\ \frac{ac}{bde}\qquad\textbf{(C)}\ \frac{abde}{c}\qquad\textbf{(D)}\ \frac{bcde}{a}\qquad\textbf{(E)}\ \frac{abc}{de}$

以下是我们为您整理的中英双语真题试卷,还有全英版真题供您选择
扫码即可免费领取完整版:

更多AMC 10 历年真题+真题详解
扫码添加顾问即可免费领取

2013年AMC 10A 真题及答案

2013年AMC 10A 真题:

Problem 1

A taxi ride costs $1.50 plus $0.25 per mile traveled. How much does a 5-mile taxi ride cost?

$\textbf{(A)}\ 2.25 \qquad\textbf{(B)}\ 2.50  \qquad\textbf{(C)}\ 2.75 \qquad\textbf{(D)}\ 3.00 \qquad\textbf{(E)}\ 3.75$

Problem 2

Alice is making a batch of cookies and needs $2\frac{1}{2}$ cups of sugar. Unfortunately, her measuring cup holds only $\frac{1}{4}$ cup of sugar. How many times must she fill that cup to get the correct amount of sugar?

$\textbf{(A)}\ 8 \qquad\textbf{(B)}\ 10  \qquad\textbf{(C)}\ 12 \qquad\textbf{(D)}\ 16 \qquad\textbf{(E)}\ 20$

Problem 3

Square $ABCD$ has side length $10$. Point $E$ is on $\overline{BC}$, and the area of $\triangle ABE$ is $40$. What is $BE$?[asy] pair A,B,C,D,E; A=(0,0); B=(0,50); C=(50,50); D=(50,0); E = (30,50);    draw(A--B);    draw(B--E);    draw(E--C); draw(C--D); draw(D--A); draw(A--E); dot(A); dot(B); dot(C); dot(D); dot(E); label("A",A,SW); label("B",B,NW); label("C",C,NE); label("D",D,SE); label("E",E,N);  [/asy]

$\textbf{(A)}\ 4\qquad\textbf{(B)}\ 5\qquad\textbf{(C)}\ 6\qquad\textbf{(D)}\ 7\qquad\textbf{(E)}\ 8$

Problem 4

A softball team played ten games, scoring 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10 runs. They lost by one run in exactly five games. In each of their other games, they scored twice as many runs as their opponent. How many total runs did their opponents score?

$\textbf{(A)}\ 35 \qquad\textbf{(B)}\ 40 \qquad\textbf{(C)}\ 45 \qquad\textbf{(D)}\ 50 \qquad\textbf{(E)}\ 55$

Problem 5

Tom, Dorothy, and Sammy went on a vacation and agreed to split the costs evenly. During their trip Tom paid $$105$, Dorothy paid $$125$, and Sammy paid $$175$. In order to share costs equally, Tom gave Sammy $t$ dollars, and Dorothy gave Sammy $d$ dollars. What is $t-d$?

$\textbf{(A)}\ 15\qquad\textbf{(B)}\ 20\qquad\textbf{(C)}\ 25\qquad\textbf{(D)}\ 30\qquad\textbf{(E)}\ 35$

Problem 6

Joey and his five brothers are ages 3, 5, 7, 9, 11, and 13. One afternoon two of his brothers whose ages sum to 16 went to the movies, two brothers younger than 10 went to play baseball, and Joey and the 5-year-old stayed home. How old is Joey?

$\textbf{(A)}\ 3 \qquad\textbf{(B)}\ 7  \qquad\textbf{(C)}\ 9 \qquad\textbf{(D)}\ 11 \qquad\textbf{(E)}\ 13$

以下是我们为您整理的中英双语真题试卷,还有全英版真题供您选择
扫码即可免费领取完整版:

更多AMC 10 历年真题+真题详解
扫码添加顾问即可免费领取

2013年AMC 10B 真题及答案

2013年AMC 10B 真题:

Problem 1

What is $\frac{2+4+6}{1+3+5} - \frac{1+3+5}{2+4+6}$?

$\textbf{(A)}\ -1 \qquad\textbf{(B)}\ \frac{5}{36} \qquad\textbf{(C)}\ \frac{7}{12} \qquad\textbf{(D)}\ \frac{49}{20} \qquad\textbf{(E)}\ \frac{43}{3}$

Problem 2

Mr. Green measures his rectangular garden by walking two of the sides and finding that it is $15$ steps by $20$ steps. Each of Mr. Green's steps is $2$ feet long. Mr. Green expects a half a pound of potatoes per square foot from his garden. How many pounds of potatoes does Mr. Green expect from his garden?

$\textbf{(A)}\ 600 \qquad\textbf{(B)}\ 800 \qquad\textbf{(C)}\ 1000 \qquad\textbf{(D)}\ 1200 \qquad\textbf{(E)}\ 1400$

Problem 3

On a particular January day, the high temperature in Lincoln, Nebraska, was $16$ degrees higher than the low temperature, and the average of the high and the low temperatures was $3\,^\circ$. In degrees, what was the low temperature in Lincoln that day?

$\textbf{(A)}\ -13\qquad\textbf{(B)}\ -8\qquad\textbf{(C)}\ -5\qquad\textbf{(D)}\ -3\qquad\textbf{(E)}\ 11$

Problem 4

When counting from $3$ to $201$$53$ is the $51^\mathrm{st}$ number counted. When counting backwards from $201$ to $3$$53$ is the $n^\mathrm{th}$ number counted. What is $n$?

$\textbf{(A)}\ 146\qquad\textbf{(B)}\ 147\qquad\textbf{(C)}\ 148\qquad\textbf{(D)}\ 149\qquad\textbf{(E)}\ 150$

Problem 5

Positive integers $a$ and $b$ are each less than $6$. What is the smallest possible value for $2 \cdot a - a \cdot b$?

$\textbf{(A)}\ -20\qquad\textbf{{(B)}}\ -15\qquad\textbf{{(C)}}\ -10\qquad\textbf{{(D)}}\ 0\qquad\textbf{{(E)}}\ 2$

Problem 6

The average age of 33 fifth-graders is 11. The average age of 55 of their parents is 33. What is the average age of all of these parents and fifth-graders?

$\textbf{(A)}\ 22\qquad\textbf{(B)}\ 23.25\qquad\textbf{(C)}\ 24.75\qquad\textbf{(D)}\ 26.25\qquad\textbf{(E)}\ 28$

以下是我们为您整理的中英双语真题试卷,还有全英版真题供您选择
扫码即可免费领取完整版:

更多AMC 10 历年真题+真题详解
扫码添加顾问即可免费领取

2014年AMC 10B 真题及答案

2014年AMC 10B 真题:

Problem 1

Leah has $13$ coins, all of which are pennies and nickels. If she had one more nickel than she has now, then she would have the same number of pennies as nickels. In cents, how much are Leah's coins worth?

$\textbf {(A) } 33 \qquad \textbf {(B) } 35 \qquad \textbf {(C) } 37 \qquad \textbf {(D) } 39 \qquad \textbf {(E) } 41$

Problem 2

What is $\frac{2^3 + 2^3}{2^{-3} + 2^{-3}}$?

$\textbf {(A) } 16 \qquad \textbf {(B) } 24 \qquad \textbf {(C) } 32 \qquad \textbf {(D) } 48 \qquad \textbf {(E) } 64$

Problem 3

Peter drove the first third of his trip on a gravel road, the next $20$ miles on pavement, and the remaining one-fifth on a dirt road. In miles how long was Peter's trip?

$\textbf {(A) } 30 \qquad \textbf {(B) } \frac{400}{11} \qquad \textbf {(C) } \frac{75}{2} \qquad \textbf {(D) } 40 \qquad \textbf {(E) } \frac{300}{7}$

Problem 4

Susie pays for $4$ muffins and $3$ bananas. Calvin spends twice as much paying for $2$ muffins and $16$ bananas. A muffin is how many times as expensive as a banana?

$\textbf {(A) } \frac{3}{2} \qquad \textbf {(B) } \frac{5}{3} \qquad \textbf {(C) } \frac{7}{4} \qquad \textbf {(D) } 2 \qquad \textbf {(E) } \frac{13}{4}$

Problem 5

Camden constructs a square window using $8$ equal-size panes of glass, as shown. The ratio of the height to width for each pane is $5 : 2$, and the borders around and between the panes are $2$ inches wide. In inches, what is the side length of the square window?[asy] fill((0,0)--(25,0)--(25,25)--(0,25)--cycle,grey); for(int i = 0; i < 4; ++i){   for(int j = 0; j < 2; ++j){     fill((6*i+2,11*j+3)--(6*i+5,11*j+3)--(6*i+5,11*j+11)--(6*i+2,11*j+11)--cycle,white);   } }[/asy]$\textbf{(A)}\ 26\qquad\textbf{(B)}\ 28\qquad\textbf{(C)}\ 30\qquad\textbf{(D)}\ 32\qquad\textbf{(E)}\ 34$

Problem 6

Orvin went to the store with just enough money to buy $30$ balloons. When he arrived, he discovered that the store had a special sale on balloons: buy $1$ balloon at the regular price and get a second at $\frac{1}{3}$ off the regular price. What is the greatest number of balloons Orvin could buy?

$\textbf {(A) } 33 \qquad \textbf {(B) } 34 \qquad \textbf {(C) } 36 \qquad \textbf {(D) } 38 \qquad \textbf {(E) } 39$

以下是我们为您整理的中英双语真题试卷,还有全英版真题供您选择
扫码即可免费领取完整版:

更多AMC 10 历年真题+真题详解
扫码添加顾问即可免费领取

2015年AMC 10B 真题及答案

2015年AMC 10B 真题:

Problem 1

What is the value of $2-(-2)^{-2}$?

$\textbf{(A) } -2 \qquad\textbf{(B) } \dfrac{1}{16} \qquad\textbf{(C) } \dfrac{7}{4} \qquad\textbf{(D) } \dfrac{9}{4} \qquad\textbf{(E) } 6$

Problem 2

Marie does three equally time-consuming tasks in a row without taking breaks. She begins the first task at 1:00 PM and finishes the second task at 2:40 PM. When does she finish the third task?

$\textbf{(A) }\text{3:10 PM}\qquad\textbf{(B) }\text{3:30 PM}\qquad\textbf{(C) }\text{4:00 PM}\qquad\textbf{(D) }\text{4:10 PM}\qquad\textbf{(E) }\text{4:30 PM}$

Problem 3

Isaac has written down one integer two times and another integer three times. The sum of the five numbers is $100$, and one of the numbers is $28$. What is the other number?

$\textbf{(A) } 8 \qquad\textbf{(B) } 11 \qquad\textbf{(C) } 14 \qquad\textbf{(D) } 15 \qquad\textbf{(E) } 18$

Problem 4

Four siblings ordered an extra large pizza. Alex ate $\frac15$, Beth $\frac13$, and Cyril $\frac14$ of the pizza. Dan got the leftovers. What is the sequence of the siblings in decreasing order of the part of pizza they consumed?

$\textbf{(A) } \text{Alex, Beth, Cyril, Dan}$ $\textbf{(B) } \text{Beth, Cyril, Alex, Dan}$ $\textbf{(C) } \text{Beth, Cyril, Dan, Alex}$ $\textbf{(D) } \text{Beth, Dan, Cyril, Alex}$ $\textbf{(E) } \text{Dan, Beth, Cyril, Alex}$

Problem 5

David, Hikmet, Jack, Marta, Rand, and Todd were in a $12$-person race with $6$ other people. Rand finished $6$ places ahead of Hikmet. Marta finished $1$ place behind Jack. David finished $2$ places behind Hikmet. Jack finished $2$ places behind Todd. Todd finished $1$ place behind Rand. Marta finished in $6$th place. Who finished in $8$th place?

$\textbf{(A) } \text{David} \qquad\textbf{(B) } \text{Hikmet} \qquad\textbf{(C) } \text{Jack} \qquad\textbf{(D) } \text{Rand} \qquad\textbf{(E) } \text{Todd}$

Problem 6

Marley practices exactly one sport each day of the week. She runs three days a week but never on two consecutive days. On Monday she plays basketball and two days later golf. She swims and plays tennis, but she never plays tennis the day after running or swimming. Which day of the week does Marley swim?

$\textbf{(A) } \text{Sunday} \qquad\textbf{(B) } \text{Tuesday} \qquad\textbf{(C) } \text{Thursday} \qquad\textbf{(D) } \text{Friday} \qquad\textbf{(E) } \text{Saturday}$

以下是我们为您整理的中英双语真题试卷,还有全英版真题供您选择
扫码即可免费领取完整版:

更多AMC 10 历年真题+真题详解
扫码添加顾问即可免费领取

2016年AMC 10B 真题及答案

2016年AMC 10B 真题:

Problem 1

What is the value of $\frac{2a^{-1}+\frac{a^{-1}}{2}}{a}$ when $a= \tfrac{1}{2}$?

$\textbf{(A)}\ 1\qquad\textbf{(B)}\ 2\qquad\textbf{(C)}\ \frac{5}{2}\qquad\textbf{(D)}\ 10\qquad\textbf{(E)}\ 20$

Problem 2

If $n\heartsuit m=n^3m^2$, what is $\frac{2\heartsuit 4}{4\heartsuit 2}$?

$\textbf{(A)}\ \frac{1}{4}\qquad\textbf{(B)}\ \frac{1}{2}\qquad\textbf{(C)}\ 1\qquad\textbf{(D)}\ 2\qquad\textbf{(E)}\ 4$

Problem 3

Let $x=-2016$. What is the value of\[\bigg| \big||x|-x\big|-|x| \bigg| -x?\]

$\textbf{(A)}\ -2016\qquad\textbf{(B)}\ 0\qquad\textbf{(C)}\ 2016\qquad\textbf{(D)}\ 4032\qquad\textbf{(E)}\ 6048$

Problem 4

Zoey read $15$ books, one at a time. The first book took her $1$ day to read, the second book took her $2$ days to read, the third book took her $3$ days to read, and so on, with each book taking her $1$ more day to read than the previous book. Zoey finished the first book on a Monday, and the second on a Wednesday. On what day of the week did she finish her $15$th book?

$\textbf{(A)}\ \text{Sunday}\qquad\textbf{(B)}\ \text{Monday}\qquad\textbf{(C)}\ \text{Wednesday}\qquad\textbf{(D)}\ \text{Friday}\qquad\textbf{(E)}\ \text{Saturday}$

Problem 5

The mean age of Amanda's $4$ cousins is $8$, and their median age is $5$. What is the sum of the ages of Amanda's youngest and oldest cousins?

$\textbf{(A)}\ 13\qquad\textbf{(B)}\ 16\qquad\textbf{(C)}\ 19\qquad\textbf{(D)}\ 22\qquad\textbf{(E)}\ 25$

Problem 6

Laura added two three-digit positive integers. All six digits in these numbers are different. Laura's sum is a three-digit number $S$. What is the smallest possible value for the sum of the digits of $S$?

$\textbf{(A)}\ 1\qquad\textbf{(B)}\ 4\qquad\textbf{(C)}\ 5\qquad\textbf{(D)}\ 15\qquad\textbf{(E)}\ 20$

以下是我们为您整理的中英双语真题试卷,还有全英版真题供您选择
扫码即可免费领取完整版:

更多AMC 10 历年真题+真题详解
扫码添加顾问即可免费领取