“藤校敲门砖”美国数学竞赛AMC系列竞赛规则详解!

近年来随着留学竞争的激烈,为了能去更好的学校发展,各位家长也是想尽办法来提升学生的学习能力以及各种软实力,那么参加竞赛就是最直接有效的一种方法。美国AMC数学竞赛是一项具有全球影响力的高含金量国际竞赛,也是最简单快捷的一种提升方法。

AMC8

考点与美国7、8年级数学大纲相对应:

包括(但不局限于)整数、分数、小数、百分数、比例、数论、日常的几何、面积、体积、概率及统计、逻辑推理等。

可以和国内大概初一、初二的数学内容作对比,主要针对的是7.8年级的学生。

题数︰25题

测验时间︰40分钟

题型︰选择题

成绩处理︰AMC总部,内布拉斯加大学林肯校区

计分方式︰答对一题一分;答错不倒扣

满分︰25分

计算器使用:不允许(2007年之后)

可参赛学生:8年级及以下学生

AMC10

考试范围覆盖美国10年级以下的数学知识点:

要包括了初等代数、初等几何(包括了勾股定理,面积,体积等)、初等数论、初等概率等。

题数︰25题

测验时间︰75分钟

题型︰选择题

计分方式︰答对一题6分;未答得1.5分;答错不倒扣

满分︰150分

计算器:不允许(2016年起)

可参赛学生:10年级及以下学生

AMC12

考点覆盖了12年级以下的数学知识点:

即除了AMC10的考点,还有三角函数、高等代数、高等几何等等,难度上比AMC10加深很多。

题数︰25题

测验时间︰75分钟

题型︰选择题

计分方式︰答对一题6分;未答得1.5分;答错不倒扣

满分︰150分

计算器:不允许(2016年起)

可参赛学生:12年级及以下

考完AMC10 建议各位考生立即开始准备AMC12,不过考虑到AMC12的难度,也不是每个学生都适合准备AMC12。

AIME美国数学邀请赛

通过AMC10和AMC12考试被邀请参加AIME,z这也是个人数学实力的有效证明!一些知名大学和公司的表格上有一栏AIME的成绩,美国麻省理工大学MIT的一些Camp就以能进入AIME比赛为接受条件。

题目数量:15题

考试时长:3小时

题型:填空题,答案为000-999 (含) 之间的整数

计分规则:答对得1分,答错或不答得0分

满分:15分

计算器:不允许使用

可参赛选手:AMC10前2.5%和AMC12前5%可以参加AIME,如果在AIME上拿到10以上,在申请美国大学时也更有优势。

AIME是真正地对数学天赋以及实力的挑战,被美国众多教师和家长称为含金量最高的数学竞赛。

扫码免费领取AMC历年真题+答案

预约最新真题讲座、课程详情可添加下方顾问老师咨询 

AMC12考察哪些知识点?AMC12高分备考学习方案来了!

对于未来计划申请海外名校的同学来说,尤其意向专业是数学专业的同学来说美国AMC数学竞赛是近来很多家长比较关注是一项国际赛事。AMC12考试是分为AB卷,在每年的十一月份左右开考,那么AMC12到底考察哪些知识点?2023年AMC12考试如何有效备考?

AMC12竞赛考点

AMC12考试与AMC10考试的题目与考察范围有很多重合的地方,以代数、几何、数论、组合四个模块的知识为主,但核心知识层面上多出了对数、三角函数的计算与图像、复数三个知识模块的考察,并且这三个模块在AMC12中几乎100%会出题考察。

AMC12 适合的学生:

AMC12需要能答对AMC8中23题左右为基础,同时需要 IB体系HL课内数学基础或者 AP体系的 pre-cal。

AMC12知识点

基本数论:质数、分解质因数、整除法则(含余数法则)、最大公约数与最小公倍数、循环小数、分数等;

代数基础部分:方程、不等式、韦达定理、指数和对数运算法则等;

函数:一次函数、二次函数、绝对值函数、反函数、复合函数、三角和反三角函数、指数函数和对数函数、多项式函数等;

数列:等差数列、等比数列、复杂混合数列及逻辑推理等;

几何:平行线、三角不等式、相似和全等三角形、三角形的高、中线和角平分线性质、正弦定理和余弦定理、四边形与多边形、圆、球体、长方体、正多面体;

概率与统计:集合、排列组合、二项展开定理、平均数、中位数、众数、方差和标准差等。

总体来说,AMC12考察的知识点属于高中数学的基础内容,但要求学生对这些内容有较为扎实的理解和熟练的运用能力。只有对常考知识点进行系统学习和训练,才能在AMC12中取得好成绩。

扫码免费预约领取AMC历年真题+答案

预约最新真题讲座、课程详情可添加下方顾问老师咨询 

AMC12高分备考学习方案

第一步:做模拟题或真题测试,了解自己的水平

建议通过以下两种方式评估自己的英文水平

方法一:分代数、几何、数论、组合4模块评估自己的能力

方法二:根据模测评估自己的计算能力是否为薄弱项

第二步:确定当前的目标,做好规划

对于初次参加竞赛的同学来说,打好基础是第一步,不建议一开始就盲目刷题,攻克难题,首先要扎实学习代数、几何,这也是最优先最高效的知识板块;

再战AMC12或目标晋级AIME:针对模块分类做题,有条理的做分类题目是同学们当下备考的侧重点,后期多刷真题,熟悉考题的风格与出题规律。

美国数学竞赛AMC8考试设置&赛事目的&赛事含金量详细剖析!

AMC8竞赛历史悠久,在国际上有很高认可度,考试成绩国际通行。竞赛题目设计严谨新颖,能够在很大程度上提升学生的数学思维水平,增加学习数学的兴趣和热情。2023年的AMC8难度可以说破新高,分数线也普遍降低了很多。

AMC8考试设置

AMC8参赛资格:8年级或以下,且年龄不超过14.5岁

AMC8竞赛时长:40分钟

AMC8竞赛题型:25道单项选择题

AMC8竞赛时间:每年1月份(具体时间以官方通知为准)

AMC8计分方式:答对一题得1分,答错得0分,满分25分。

赛事目的

MAA组织设计这个竞赛的目的是通过这样一种对学生有吸引力的考试,增加学生在数学方面的兴趣及学习数学的热情,促进学生学习中学必修数学课程之外的数学内容,增强问题解决的能力,AMC8测验可激发学生提高对数学理解能力的潜能。

扫码免费预约领取AMC历年真题+答案

预约最新真题讲座、课程详情可添加下方顾问老师咨询 

赛事含金量

AMC8考试难度较大,要求学生有扎实的数学基础知识和较强的数学思维能力。AMC8考察的知识点主要包括:

数学基础知识: 整式、不等式、几何、三角函数、指数函数、对数函数等

数学思维能力: 问题分析能力、逻辑推理能力、概率统计知识应用能力等

考察信息提取能力:近年的题目也不再像17、18年那样频繁考察初中平面几何,而是将几何中的图形处理需求分散给了其他类型的题目。非常考验同学们从图形中提取信息的能力,因此信息提取的速度、准确度都会密切影响答题时间和最终成绩。

数学应用: 解决实际问题的能力,如代数问题、几何问题、统计问题等

AMC8考试考察的知识面广,难度较大,需要学生有扎实的数学基础和较强的数学思维能力,才能取得较好的成绩。

参加AMC8考试对学生的帮助:

增强数学兴趣和学习动力。AMC8考试有较高的学术含金量,可以激发学生学习数学的热情,增强学习动力。

提高数学思维能力。AMC8考试的题目考察学生的数学思维能力,参加考试过程是数学思维能力锻炼的好机会。

拓宽数学视野。AMC8考试的知识范围广,可以帮助学生系统学习各类数学知识,拓宽数学视野。

培养数学实践能力。AMC8考试要求学生解决实际的数学问题,这有助于培养和提高学生的数学实践能力。

综上,AMC8考试对于提高学生的数学兴趣、数学思维能力、数学视野和数学实践能力非常有价值,值得更多的学生参加。

2018年AIME II真题及答案

2018年AIME II真题:

Problem 1

Points $A$$B$, and $C$ lie in that order along a straight path where the distance from $A$ to $C$ is $1800$ meters. Ina runs twice as fast as Eve, and Paul runs twice as fast as Ina. The three runners start running at the same time with Ina starting at $A$ and running toward $C$, Paul starting at $B$ and running toward $C$, and Eve starting at $C$ and running toward $A$. When Paul meets Eve, he turns around and runs toward $A$. Paul and Ina both arrive at $B$ at the same time. Find the number of meters from $A$ to $B$.

Problem 2

Let $a_{0} = 2$$a_{1} = 5$, and $a_{2} = 8$, and for $n > 2$ define $a_{n}$ recursively to be the remainder when $4(a_{n-1} + a_{n-2} + a_{n-3})$ is divided by $11$. Find $a_{2018} \cdot a_{2020} \cdot a_{2022}$.

Problem 3

Find the sum of all positive integers $b < 1000$ such that the base-$b$ integer $36_{b}$ is a perfect square and the base-$b$ integer $27_{b}$ is a perfect cube.

Problem 4

In equiangular octagon $CAROLINE$$CA = RO = LI = NE =$ $\sqrt{2}$ and $AR = OL = IN = EC = 1$. The self-intersecting octagon $CORNELIA$ enclosed six non-overlapping triangular regions. Let $K$ be the area enclosed by $CORNELIA$, that is, the total area of the six triangular regions. Then $K = \frac{a}{b}$, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.

Problem 5

Suppose that $x$$y$, and $z$ are complex numbers such that $xy = -80 - 320i$$yz = 60$, and $zx = -96 + 24i$, where $i$ $=$ $\sqrt{-1}$. Then there are real numbers $a$ and $b$ such that $x + y + z = a + bi$. Find $a^2 + b^2$.

Problem 6

A real number $a$ is chosen randomly and uniformly from the interval $[-20, 18]$. The probability that the roots of the polynomial

\[x^4 + 2ax^3 + (2a - 2)x^2 + (-4a + 3)x - 2\]

are all real can be written in the form $\dfrac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m + n$.

以上仅展示2018年 AIME I 部分真题,完整版扫描文末二维码即可免费领取,还有更多AMC历年真题+视频解析~

更多AIME 历年真题+真题详解
扫码添加顾问即可免费领取

2023年AIME I 真题及答案

2023年AIME I 真题:

Problem 1

Five men and nine women stand equally spaced around a circle in random order. The probability that every man stands diametrically opposite a woman is $\frac{m}{n},$ where $m$ and $n$ are relatively prime positive integers. Find $m+n.$

Problem 2

Positive real numbers $b \not= 1$ and $n$ satisfy the equations\[\sqrt{\log_b n} = \log_b \sqrt{n} \qquad \text{and} \qquad b \cdot \log_b n = \log_b (bn).\]The value of $n$ is $\frac{j}{k},$ where $j$ and $k$ are relatively prime positive integers. Find $j+k.$

Problem 3

A plane contains $40$ lines, no $2$ of which are parallel. Suppose that there are $3$ points where exactly $3$ lines intersect, $4$ points where exactly $4$ lines intersect, $5$ points where exactly $5$ lines intersect, $6$ points where exactly $6$ lines intersect, and no points where more than $6$ lines intersect. Find the number of points where exactly $2$ lines intersect.

Problem 4

The sum of all positive integers $m$ such that $\frac{13!}{m}$ is a perfect square can be written as $2^a3^b5^c7^d11^e13^f,$ where $a,b,c,d,e,$ and $f$ are positive integers. Find $a+b+c+d+e+f.$

Problem 5

Let $P$ be a point on the circle circumscribing square $ABCD$ that satisfies $PA \cdot PC = 56$ and $PB \cdot PD = 90.$ Find the area of $ABCD.$

Problem 6

Alice knows that $3$ red cards and $3$ black cards will be revealed to her one at a time in random order. Before each card is revealed, Alice must guess its color. If Alice plays optimally, the expected number of cards she will guess correctly is $\frac{m}{n},$ where $m$ and $n$ are relatively prime positive integers. Find $m+n.$

以下是我们为您整理的全英版pdf真题,扫码即可免费领取完整版:

更多AIME 历年真题+真题详解
扫码添加顾问即可免费领取

2022年AIME I 真题及答案

2022年AIME I 真题:

Problem 1

Quadratic polynomials $P(x)$ and $Q(x)$ have leading coefficients $2$ and $-2,$ respectively. The graphs of both polynomials pass through the two points $(16,54)$ and $(20,53).$ Find $P(0) + Q(0).$

Problem 2

Find the three-digit positive integer $\underline{a}\,\underline{b}\,\underline{c}$ whose representation in base nine is $\underline{b}\,\underline{c}\,\underline{a}_{\,\text{nine}},$ where $a,$ $b,$ and $c$ are (not necessarily distinct) digits.

Problem 3

In isosceles trapezoid $ABCD,$ parallel bases $\overline{AB}$ and $\overline{CD}$ have lengths $500$ and $650,$ respectively, and $AD=BC=333.$ The angle bisectors of $\angle A$ and $\angle D$ meet at $P,$ and the angle bisectors of $\angle B$ and $\angle C$ meet at $Q.$ Find $PQ.$

Problem 4

Let $w = \dfrac{\sqrt{3} + i}{2}$ and $z = \dfrac{-1 + i\sqrt{3}}{2},$ where $i = \sqrt{-1}.$ Find the number of ordered pairs $(r,s)$ of positive integers not exceeding $100$ that satisfy the equation $i \cdot w^r = z^s.$

Problem 5

A straight river that is $264$ meters wide flows from west to east at a rate of $14$ meters per minute. Melanie and Sherry sit on the south bank of the river with Melanie a distance of $D$ meters downstream from Sherry. Relative to the water, Melanie swims at $80$ meters per minute, and Sherry swims at $60$ meters per minute. At the same time, Melanie and Sherry begin swimming in straight lines to a point on the north bank of the river that is equidistant from their starting positions. The two women arrive at this point simultaneously. Find $D.$

Problem 6

Find the number of ordered pairs of integers $(a,b)$ such that the sequence\[3,4,5,a,b,30,40,50\]is strictly increasing and no set of four (not necessarily consecutive) terms forms an arithmetic progression.

以上仅展示2022年 AIME I 部分真题,完整版扫描文末二维码即可免费领取,还有更多AMC历年真题+视频解析~

更多AIME 历年真题+真题详解
扫码添加顾问即可免费领取

2022年AIME II 真题及答案

2022年AIME II 真题:

Problem 1

Adults made up $\frac5{12}$ of the crowd of people at a concert. After a bus carrying $50$ more people arrived, adults made up $\frac{11}{25}$ of the people at the concert. Find the minimum number of adults who could have been at the concert after the bus arrived.

Problem 2

Azar, Carl, Jon, and Sergey are the four players left in a singles tennis tournament. They are randomly assigned opponents in the semifinal matches, and the winners of those matches play each other in the final match to determine the winner of the tournament. When Azar plays Carl, Azar will win the match with probability $\frac23$. When either Azar or Carl plays either Jon or Sergey, Azar or Carl will win the match with probability $\frac34$. Assume that outcomes of different matches are independent. The probability that Carl will win the tournament is $\frac{p}{q}$, where $p$ and $q$ are relatively prime positive integers. Find $p+q$.

Problem 3

A right square pyramid with volume $54$ has a base with side length $6.$ The five vertices of the pyramid all lie on a sphere with radius $\frac mn$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.

Problem 4

There is a positive real number $x$ not equal to either $\tfrac{1}{20}$ or $\tfrac{1}{2}$ such that\[\log_{20x} (22x)=\log_{2x} (202x).\]The value $\log_{20x} (22x)$ can be written as $\log_{10} (\tfrac{m}{n})$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.

Problem 5

Twenty distinct points are marked on a circle and labeled $1$ through $20$ in clockwise order. A line segment is drawn between every pair of points whose labels differ by a prime number. Find the number of triangles formed whose vertices are among the original $20$ points.

Problem 6

Let $x_1\leq x_2\leq \cdots\leq x_{100}$ be real numbers such that $|x_1| + |x_2| + \cdots + |x_{100}| = 1$ and $x_1 + x_2 + \cdots + x_{100} = 0$. Among all such $100$-tuples of numbers, the greatest value that $x_{76} - x_{16}$ can achieve is $\tfrac mn$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.

以上仅展示2022年 AIME II 部分真题,完整版扫描文末二维码即可免费领取,还有更多AMC历年真题+视频解析~

更多AIME 历年真题+真题详解
扫码添加顾问即可免费领取

2023年AIME II 真题及答案

2023年AIME II 真题:

Problem 1

The numbers of apples growing on each of six apple trees form an arithmetic sequence where the greatest number of apples growing on any of the six trees is double the least number of apples growing on any of the six trees. The total number of apples growing on all six trees is $990.$ Find the greatest number of apples growing on any of the six trees.

Problem 2

Recall that a palindrome is a number that reads the same forward and backward. Find the greatest integer less than $1000$ that is a palindrome both when written in base ten and when written in base eight, such as $292 = 444_{\text{eight}}.$

Problem 3

Let $\triangle ABC$ be an isosceles triangle with $\angle A = 90^\circ.$ There exists a point $P$ inside $\triangle ABC$ such that $\angle PAB = \angle PBC = \angle PCA$ and $AP = 10.$ Find the area of $\triangle ABC.$

Problem 4

Let $x,y,$ and $z$ be real numbers satisfying the system of equations\begin{align*} xy + 4z &= 60 \\ yz + 4x &= 60 \\ zx + 4y &= 60. \end{align*}Let $S$ be the set of possible values of $x.$ Find the sum of the squares of the elements of $S.$

Problem 5

Let $S$ be the set of all positive rational numbers $r$ such that when the two numbers $r$ and $55r$ are written as fractions in lowest terms, the sum of the numerator and denominator of one fraction is the same as the sum of the numerator and denominator of the other fraction. The sum of all the elements of $S$ can be expressed in the form $\frac{p}{q},$ where $p$ and $q$ are relatively prime positive integers. Find $p+q.$

Problem 6

Consider the L-shaped region formed by three unit squares joined at their sides, as shown below. Two points $A$ and $B$ are chosen independently and uniformly at random from inside the region. The probability that the midpoint of $\overline{AB}$ also lies inside this L-shaped region can be expressed as $\frac{m}{n},$ where $m$ and $n$ are relatively prime positive integers. Find $m+n.$[asy] unitsize(2cm); draw((0,0)--(2,0)--(2,1)--(1,1)--(1,2)--(0,2)--cycle); draw((0,1)--(1,1)--(1,0),dashed); [/asy]

以上仅展示2023年 AIME II 部分真题,完整版扫描文末二维码即可免费领取,还有更多AMC历年真题+视频解析~

扫码免费领取更多AMC历年真题+答案

预约最新真题讲座、课程详情可添加下方顾问老师咨询 

2013年AIME I 真题及答案

2013年AIME I 真题:

Problem 1

The AIME Triathlon consists of a half-mile swim, a 30-mile bicycle ride, and an eight-mile run. Tom swims, bicycles, and runs at constant rates. He runs fives times as fast as he swims, and he bicycles twice as fast as he runs. Tom completes the AIME Triathlon in four and a quarter hours. How many minutes does he spend bicycling?

Problem 2

Find the number of five-digit positive integers, $n$, that satisfy the following conditions:

(a) the number n is divisible by 5,

    (b) the first and last digits of n are equal, and
    (c) the sum of the digits of n is divisible by 5.

Problem 3

Let $ABCD$ be a square, and let $E$ and $F$ be points on $\overline{AB}$ and $\overline{BC},$ respectively. The line through $E$ parallel to $\overline{BC}$ and the line through $F$ parallel to $\overline{AB}$ divide $ABCD$ into two squares and two nonsquare rectangles. The sum of the areas of the two squares is $\frac{9}{10}$ of the area of square $ABCD.$ Find $\frac{AE}{EB} + \frac{EB}{AE}.$

Problem 4

In the array of $13$ squares shown below, $8$ squares are colored red, and the remaining $5$ squares are colored blue. If one of all possible such colorings is chosen at random, the probability that the chosen colored array appears the same when rotated $90^{\circ}$ around the central square is $\frac{1}{n}$ , where $n$ is a positive integer. Find $n$.

[asy] draw((0,0)--(1,0)--(1,1)--(0,1)--(0,0)); draw((2,0)--(2,2)--(3,2)--(3,0)--(3,1)--(2,1)--(4,1)--(4,0)--(2,0)); draw((1,2)--(1,4)--(0,4)--(0,2)--(0,3)--(1,3)--(-1,3)--(-1,2)--(1,2)); draw((-1,1)--(-3,1)--(-3,0)--(-1,0)--(-2,0)--(-2,1)--(-2,-1)--(-1,-1)--(-1,1)); draw((0,-1)--(0,-3)--(1,-3)--(1,-1)--(1,-2)--(0,-2)--(2,-2)--(2,-1)--(0,-1)); size(100);[/asy]

Problem 5

The real root of the equation $8x^3-3x^2-3x-1=0$ can be written in the form $\frac{\sqrt[3]{a}+\sqrt[3]{b}+1}{c}$, where $a$$b$, and $c$ are positive integers. Find $a+b+c$.

Problem 6

Melinda has three empty boxes and $12$ textbooks, three of which are mathematics textbooks. One box will hold any three of her textbooks, one will hold any four of her textbooks, and one will hold any five of her textbooks. If Melinda packs her textbooks into these boxes in random order, the probability that all three mathematics textbooks end up in the same box can be written as $\frac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.

以下是我们为您整理的真题试卷,扫码即可免费领取完整版:

更多AIME 历年真题+真题详解
扫码添加顾问即可免费领取

1989年AJHSME 真题及答案

1989年AJHSME 真题:

Problem 1

$(1+11+21+31+41)+(9+19+29+39+49)=$

$\text{(A)}\ 150 \qquad \text{(B)}\ 199 \qquad \text{(C)}\ 200 \qquad \text{(D)}\ 249 \qquad \text{(E)}\ 250$

Problem 2

$\frac{2}{10}+\frac{4}{100}+\frac{6}{1000} =$

$\text{(A)}\ .012 \qquad \text{(B)}\ .0246 \qquad \text{(C)}\ .12 \qquad \text{(D)}\ .246 \qquad \text{(E)}\ 246$

Problem 3

Which of the following numbers is the largest?

$\text{(A)}\ .99 \qquad \text{(B)}\ .9099 \qquad \text{(C)}\ .9 \qquad \text{(D)}\ .909 \qquad \text{(E)}\ .9009$

Problem 4

Estimate to determine which of the following numbers is closest to $\frac{401}{.205}$.

$\text{(A)}\ .2 \qquad \text{(B)}\ 2 \qquad \text{(C)}\ 20 \qquad \text{(D)}\ 200 \qquad \text{(E)}\ 2000$

Problem 5

$-15+9\times (6\div 3) =$

$\text{(A)}\ -48 \qquad \text{(B)}\ -12 \qquad \text{(C)}\ -3 \qquad \text{(D)}\ 3 \qquad \text{(E)}\ 12$

Problem 6

If the markings on the number line are equally spaced, what is the number $\text{y}$?

[asy] draw((-4,0)--(26,0),Arrows); for(int a=0; a<6; ++a) { draw((4a,-1)--(4a,1)); } label("0",(0,-1),S); label("20",(20,-1),S); label("y",(12,-1),S); [/asy]

$\text{(A)}\ 3 \qquad \text{(B)}\ 10 \qquad \text{(C)}\ 12 \qquad \text{(D)}\ 15 \qquad \text{(E)}\ 16$

Problem 7

If the value of $20$ quarters and $10$ dimes equals the value of $10$ quarters and $n$ dimes, then $n=$

$\text{(A)}\ 10 \qquad \text{(B)}\ 20 \qquad \text{(C)}\ 30 \qquad \text{(D)}\ 35 \qquad \text{(E)}\ 45$

以下是我们为您整理的全英版pdf真题,扫码即可免费领取完整版:

扫码免费预约领取更多AMC历年真题+答案

预约最新真题讲座、课程详情可添加下方顾问老师咨询