1994年AJHSME 真题及答案

1994年AJHSME 真题:

Problem 1

Which of the following is the largest?

$\text{(A)}\ \dfrac{1}{3} \qquad \text{(B)}\ \dfrac{1}{4} \qquad \text{(C)}\ \dfrac{3}{8} \qquad \text{(D)}\ \dfrac{5}{12} \qquad \text{(E)}\ \dfrac{7}{24}$

Problem 2

$\dfrac{1}{10}+\dfrac{2}{10}+\dfrac{3}{10}+\dfrac{4}{10}+\dfrac{5}{10}+\dfrac{6}{10}+\dfrac{7}{10}+\dfrac{8}{10}+\dfrac{9}{10}+\dfrac{55}{10}=$

$\text{(A)}\ 4\dfrac{1}{2} \qquad \text{(B)}\ 6.4 \qquad \text{(C)}\ 9 \qquad \text{(D)}\ 10 \qquad \text{(E)}\ 11$

Problem 3

Each day Maria must work $8$ hours. This does not include the $45$ minutes she takes for lunch. If she begins working at $\text{7:25 A.M.}$ and takes her lunch break at noon, then her working day will end at

$\text{(A)}\ \text{3:40 P.M.} \qquad \text{(B)}\ \text{3:55 P.M.} \qquad \text{(C)}\ \text{4:10 P.M.} \qquad \text{(D)}\ \text{4:25 P.M.} \qquad \text{(E)}\ \text{4:40 P.M.}$

Problem 4

Which of the following represents the result when the figure shown below is rotated clockwise $120^\circ$ around its center?

[asy] unitsize(6); draw(circle((0,0),5)); draw((-1,2.5)--(1,2.5)--(0,2.5+sqrt(3))--cycle); draw(circle((-2.5,-1.5),1)); draw((1.5,-1)--(3,0)--(4,-1.5)--(2.5,-2.5)--cycle); [/asy]

[asy] unitsize(6); for (int i = 0; i < 5; ++i) { draw(circle((12*i,0),5)); } draw((-1,2.5)--(1,2.5)--(0,2.5+sqrt(3))--cycle); draw(circle((-2.5,-1.5),1)); draw((1.5,-1)--(3,0)--(4,-1.5)--(2.5,-2.5)--cycle); draw((14,-2)--(16,-2)--(15,-2+sqrt(3))--cycle); draw(circle((12,3),1)); draw((10.5,-1)--(9,0)--(8,-1.5)--(9.5,-2.5)--cycle); draw((22,-2)--(20,-2)--(21,-2+sqrt(3))--cycle); draw(circle((27,-1),1)); draw((24,1.5)--(22.75,2.75)--(24,4)--(25.25,2.75)--cycle); draw((35,2.5)--(37,2.5)--(36,2.5+sqrt(3))--cycle); draw(circle((39,-1),1)); draw((34.5,-1)--(33,0)--(32,-1.5)--(33.5,-2.5)--cycle); draw((50,-2)--(52,-2)--(51,-2+sqrt(3))--cycle); draw(circle((45.5,-1.5),1)); draw((48,1.5)--(46.75,2.75)--(48,4)--(49.25,2.75)--cycle); label("(A)",(0,5),N); label("(B)",(12,5),N); label("(C)",(24,5),N); label("(D)",(36,5),N); label("(E)",(48,5),N); [/asy]

Problem 5

Given that $\text{1 mile} = \text{8 furlongs}$ and $\text{1 furlong} = \text{40 rods}$, the number of rods in one mile is

$\text{(A)}\ 5 \qquad \text{(B)}\ 320 \qquad \text{(C)}\ 660 \qquad \text{(D)}\ 1760 \qquad \text{(E)}\ 5280$

Problem 6

The unit's digit (one's digit) of the product of any six consecutive positive whole numbers is

$\text{(A)}\ 0 \qquad \text{(B)}\ 2 \qquad \text{(C)}\ 4 \qquad \text{(D)}\ 6 \qquad \text{(E)}\ 8$

Problem 7

If $\angle A = 60^\circ$$\angle E = 40^\circ$ and $\angle C = 30^\circ$, then $\angle BDC =$

[asy] pair A,B,C,D,EE; A = origin; B = (2,0); C = (5,0); EE = (1.5,3); D = (1.75,1.5); draw(A--C--D); draw(B--EE--A); dot(A); dot(B); dot(C); dot(D); dot(EE); label("$A$",A,SW); label("$B$",B,S); label("$C$",C,SE); label("$D$",D,NE); label("$E$",EE,N); [/asy]

$\text{(A)}\ 40^\circ \qquad \text{(B)}\ 50^\circ \qquad \text{(C)}\ 60^\circ \qquad \text{(D)}\ 70^\circ \qquad \text{(E)}\ 80^\circ$

Problem 8

For how many three-digit whole numbers does the sum of the digits equal $25$?

$\text{(A)}\ 2 \qquad \text{(B)}\ 4 \qquad \text{(C)}\ 6 \qquad \text{(D)}\ 8 \qquad \text{(E)}\ 10$

以下是我们为您整理的全英版pdf真题,扫码即可免费领取完整版:

扫码免费预约领取更多AMC历年真题+答案

预约最新真题讲座、课程详情可添加下方顾问老师咨询