2023年AIME I 真题及答案

2023年AIME I 真题:

Problem 1

Five men and nine women stand equally spaced around a circle in random order. The probability that every man stands diametrically opposite a woman is $\frac{m}{n},$ where $m$ and $n$ are relatively prime positive integers. Find $m+n.$

Problem 2

Positive real numbers $b \not= 1$ and $n$ satisfy the equations\[\sqrt{\log_b n} = \log_b \sqrt{n} \qquad \text{and} \qquad b \cdot \log_b n = \log_b (bn).\]The value of $n$ is $\frac{j}{k},$ where $j$ and $k$ are relatively prime positive integers. Find $j+k.$

Problem 3

A plane contains $40$ lines, no $2$ of which are parallel. Suppose that there are $3$ points where exactly $3$ lines intersect, $4$ points where exactly $4$ lines intersect, $5$ points where exactly $5$ lines intersect, $6$ points where exactly $6$ lines intersect, and no points where more than $6$ lines intersect. Find the number of points where exactly $2$ lines intersect.

Problem 4

The sum of all positive integers $m$ such that $\frac{13!}{m}$ is a perfect square can be written as $2^a3^b5^c7^d11^e13^f,$ where $a,b,c,d,e,$ and $f$ are positive integers. Find $a+b+c+d+e+f.$

Problem 5

Let $P$ be a point on the circle circumscribing square $ABCD$ that satisfies $PA \cdot PC = 56$ and $PB \cdot PD = 90.$ Find the area of $ABCD.$

Problem 6

Alice knows that $3$ red cards and $3$ black cards will be revealed to her one at a time in random order. Before each card is revealed, Alice must guess its color. If Alice plays optimally, the expected number of cards she will guess correctly is $\frac{m}{n},$ where $m$ and $n$ are relatively prime positive integers. Find $m+n.$

以下是我们为您整理的全英版pdf真题,扫码即可免费领取完整版:

更多AIME 历年真题+真题详解
扫码添加顾问即可免费领取