2015年USAJMO 真题
Day 1
Problem 1
Given a sequence of real numbers, a move consists of choosing two terms and replacing each with their arithmetic mean. Show that there exists a sequence of 2015 distinct real numbers such that after one initial move is applied to the sequence -- no matter what move -- there is always a way to continue with a finite sequence of moves so as to obtain in the end a constant sequence.
Problem 2
Solve in integers the equation
Problem 3
Quadrilateral is inscribed in circle with and . Let be a variable point on segment . Line meets again at (other than ). Point lies on arc of such that is perpendicular to . Let denote the midpoint of chord . As varies on segment , show that moves along a circle.
Day 2
Problem 4
Find all functions such thatfor all rational numbers that form an arithmetic progression. ( is the set of all rational numbers.)
扫码添加顾问即可免费领取完整版
还有更多USAJMO 历年真题+真题详解