Day 1
Problem 1
Are there integers and such that and are both perfect cubes of integers?
Problem 2
Each cell of an board is filled with some nonnegative integer. Two numbers in the filling are said to be adjacent if their cells share a common side. (Note that two numbers in cells that share only a corner are not adjacent). The filling is called a garden if it satisfies the following two conditions:
(i) The difference between any two adjacent numbers is either or .
(ii) If a number is less than or equal to all of its adjacent numbers, then it is equal to .
Determine the number of distinct gardens in terms of and .
Problem 3
In triangle , points lie on sides respectively. Let , , denote the circumcircles of triangles , , , respectively. Given the fact that segment intersects , , again at respectively, prove that .
Day 2
Problem 4
Let be the number of ways to write as a sum of powers of , where we keep track of the order of the summation. For example, because can be written as , , , , , and . Find the smallest greater than for which is odd.
扫码添加顾问即可免费领取完整版
还有更多USAJMO 历年真题+真题详解