2017年AIME II 真题:
Problem 1
Find the number of subsets of that are subsets of neither nor .
Problem 2
Teams , , , and are in the playoffs. In the semifinal matches, plays , and plays . The winners of those two matches will play each other in the final match to determine the champion. When plays , the probability that wins is , and the outcomes of all the matches are independent. The probability that will be the champion is , where and are relatively prime positive integers. Find .
Problem 3
A triangle has vertices , , and . The probability that a randomly chosen point inside the triangle is closer to vertex than to either vertex or vertex can be written as , where and are relatively prime positive integers. Find .
Problem 4
Find the number of positive integers less than or equal to whose base-three representation contains no digit equal to .
Problem 5
A set contains four numbers. The six pairwise sums of distinct elements of the set, in no particular order, are , , , , , and . Find the greatest possible value of .
Problem 6
Find the sum of all positive integers such that is an integer.
以下是我们为您整理的真题试卷,扫码即可免费领取完整版:
更多AIME 历年真题+真题详解
扫码添加顾问即可免费领取