2013年AIME II 真题:
Problem 1
Suppose that the measurement of time during the day is converted to the metric system so that each day has 
 metric hours, and each metric hour has 
 metric minutes. Digital clocks would then be produced that would read 
 just before midnight, 
 at midnight, 
 at the former 
 AM, and 
 at the former 
 PM. After the conversion, a person who wanted to wake up at the equivalent of the former 
 AM would set his new digital alarm clock for 
, where 
, 
, and 
 are digits. Find 
.
Problem 2
Positive integers 
 and 
 satisfy the condition
Find the sum of all possible values of 
.
Problem 3
A large candle is 
 centimeters tall. It is designed to burn down more quickly when it is first lit and more slowly as it approaches its bottom. Specifically, the candle takes 
 seconds to burn down the first centimeter from the top, 
 seconds to burn down the second centimeter, and 
 seconds to burn down the 
-th centimeter. Suppose it takes 
 seconds for the candle to burn down completely. Then 
 seconds after it is lit, the candle's height in centimeters will be 
. Find 
.
Problem 4
In the Cartesian plane let 
 and 
. Equilateral triangle 
 is constructed so that 
 lies in the first quadrant. Let 
 be the center of 
. Then 
 can be written as 
, where 
 and 
 are relatively prime positive integers and 
 is an integer that is not divisible by the square of any prime. Find 
.
Problem 5
In equilateral 
 let points 
 and 
 trisect 
. Then 
 can be expressed in the form 
, where 
 and 
 are relatively prime positive integers, and 
 is an integer that is not divisible by the square of any prime. Find 
.
Problem 6
Find the least positive integer 
 such that the set of 
 consecutive integers beginning with 
 contains no square of an integer.
以下是我们为您整理的真题试卷,扫码即可免费领取完整版:




更多AIME 历年真题+真题详解
扫码添加顾问即可免费领取

