2011年AIME I 真题:
Problem 1
Jar 
 contains four liters of a solution that is 
 acid. Jar 
 contains five liters of a solution that is 
 acid. Jar 
 contains one liter of a solution that is 
 acid. From jar 
, 
 liters of the solution is added to jar 
, and the remainder of the solution in jar 
 is added to jar B. At the end both jar 
 and jar 
 contain solutions that are 
 acid. Given that 
 and 
 are relatively prime positive integers, find 
.
Problem 2
In rectangle 
, 
 and 
. Points 
 and 
 lie inside rectangle 
 so that 
, 
, 
, 
, and line 
 intersects segment 
. The length 
 can be expressed in the form 
, where 
, 
, and 
 are positive integers and 
 is not divisible by the square of any prime. Find 
.
Problem 3
Let 
 be the line with slope 
 that contains the point 
, and let 
 be the line perpendicular to line 
 that contains the point 
. The original coordinate axes are erased, and line 
 is made the 
-axis and line 
 the 
-axis. In the new coordinate system, point 
 is on the positive 
-axis, and point 
 is on the positive 
-axis. The point 
 with coordinates 
 in the original system has coordinates 
 in the new coordinate system. Find 
.
Problem 4
In triangle 
, 
, 
, and 
. The angle bisector of angle 
 intersects 
 at point 
, and the angle bisector of angle 
 intersects 
 at point 
. Let 
 and 
 be the feet of the perpendiculars from 
 to 
 and 
, respectively. Find 
.
Problem 5
The vertices of a regular nonagon (9-sided polygon) are to be labeled with the digits 1 through 9 in such a way that the sum of the numbers on every three consecutive vertices is a multiple of 3. Two acceptable arrangements are considered to be indistinguishable if one can be obtained from the other by rotating the nonagon in the plane. Find the number of distinguishable acceptable arrangements.
Problem 6
Suppose that a parabola has vertex 
 and equation 
, where 
 and 
 is an integer. The minimum possible value of 
 can be written in the form 
, where 
 and 
 are relatively prime positive integers. Find 
.
以下是我们为您整理的真题试卷,扫码即可免费领取完整版:




更多AIME 历年真题+真题详解
扫码添加顾问即可免费领取

