2022年USAMO 真题:
Day 1
Problem 1
Let and be positive integers. The cells of an grid are colored amber and bronze such that there are at least amber cells and at least bronze cells. Prove that it is possible to choose amber cells and bronze cells such that no two of the chosen cells lie in the same row or column.
Problem 2
Let and be fixed integers, and . Given are identical black rods and identical white rods, each of side length 1.
We assemble a regular gon using these rods so that parallel sides are the same color. Then, a convex -gon is formed by translating the black rods, and a convex -gon is formed by translating the white rods. An example of one way of doing the assembly when and is shown below, as well as the resulting polygons and .
Prove that the difference of the areas of and depends only on the numbers and , and not on how the -gon was assembled.
Problem 3
Let be the set of all positive real numbers. Find all functions such that for all we have
Day 2
Problem 4
Find all pairs of primes for which and are both perfect squares.
更多USAMO 历年真题+真题详解
扫码添加顾问即可免费领取