2020年USAMO 真题及答案

2020年USAMO 真题:

Day 1

Problem 1

Let $ABC$ be a fixed acute triangle inscribed in a circle $\omega$ with center $O$. A variable point $X$ is chosen on minor arc $AB$ of $\omega$, and segments $CX$ and $AB$ meet at $D$. Denote by $O_1$ and $O_2$ the circumcenters of triangles $ADX$ and $BDX$, respectively. Determine all points $X$ for which the area of triangle $OO_1O_2$ is minimized.

Problem 2

An empty $2020 \times 2020 \times 2020$ cube is given, and a $2020 \times 2020$ grid of square unit cells is drawn on each of its six faces. A beam is a $1 \times 1 \times 2020$ rectangular prism. Several beams are placed inside the cube subject to the following conditions:

$\bullet$ The two $1 \times 1$ faces of each beam coincide with unit cells lying on opposite faces of the cube. (Hence, there are $3 \cdot 2020^2$ possible positions for a beam.)

$\bullet$ No two beams have intersecting interiors.

$\bullet$ The interiors of each of the four $1 \times 2020$ faces of each beam touch either a face of the cube or the interior of the face of another beam.

What is the smallest positive number of beams that can be placed to satisfy these conditions?

Problem 3

Let $p$ be an odd prime. An integer $x$ is called a quadratic non-residue if $p$ does not divide $x - t^2$ for any integer $t$.

Denote by $A$ the set of all integers $a$ such that $1 \le a < p$, and both $a$ and $4 - a$ are quadratic non-residues. Calculate the remainder when the product of the elements of $A$ is divided by $p$.

Day 2

Problem 4

Suppose that $(a_1, b_1), (a_2, b_2), \ldots , (a_{100}, b_{100})$ are distinct ordered pairs of nonnegative integers. Let $N$ denote the number of pairs of integers $(i, j)$ satisfying $1 \le i < j \le 100$ and $|a_ib_j - a_j b_i|=1$. Determine the largest possible value of $N$ over all possible choices of the $100$ ordered pairs.

以下是我们为您整理的真题试卷,扫码即可免费领取完整版:

更多USAMO 历年真题+真题详解
扫码添加顾问即可免费领取