2018年USAMO 真题:
Day 1
Note: For any geometry problem whose statement begins with an asterisk (), the first page of the solution must be a large, in-scale, clearly labeled diagram. Failure to meet this requirement will result in an automatic 1-point deduction.
Problem 1
Let be positive real numbers such that . Prove that
Problem 2
Find all functions such that
for all with
Problem 3
For a given integer let be the set of positive integers less than that are relatively prime to Prove that if every prime that divides also divides then is divisible by for every positive integer
Day 2
Note: For any geometry problem whose statement begins with an asterisk (), the first page of the solution must be a large, in-scale, clearly labeled diagram. Failure to meet this requirement will result in an automatic 1-point deduction.
Problem 4
Let be a prime, and let be integers. Show that there exists an integer such that the numbersproduce at least distinct remainders upon division by .
以下是我们为您整理的真题试卷,扫码即可免费领取完整版:
更多USAMO 历年真题+真题详解
扫码添加顾问即可免费领取