2020年AIME II 真题:
Problem 1
Find the number of ordered pairs of positive integers
such that
.
Problem 2
Let
be a point chosen uniformly at random in the interior of the unit square with vertices at
, and
. The probability that the slope of the line determined by
and the point
is greater than or equal to
can be written as
, where
and
are relatively prime positive integers. Find
.
Problem 3
The value of
that satisfies
can be written as
, where
and
are relatively prime positive integers. Find
.
Problem 4
Triangles
and
lie in the coordinate plane with vertices
,
,
,
,
,
. A rotation of
degrees clockwise around the point
where
, will transform
to
. Find
.
Problem 5
For each positive integer
, let
be the sum of the digits in the base-four representation of
and let
be the sum of the digits in the base-eight representation of
. For example,
, and
. Let
be the least value of
such that the base-sixteen representation of
cannot be expressed using only the digits
through
. Find the remainder when
is divided by
.
Problem 6
Define a sequence recursively by
,
, and
for all
. Then
can be written as
, where
and
are relatively prime positive integers. Find
.
以下是我们为您整理的真题试卷,扫码即可免费领取完整版:



更多AIME 历年真题+真题详解
扫码添加顾问即可免费领取






![[asy] pair A, B, C, D, E, F; A = (0,3); B=(0,0); C=(11,0); D=(11,3); E=foot(C, A, (9/4,0)); F=foot(A, C, (35/4,3)); draw(A--B--C--D--cycle); draw(A--E--C--F--cycle); filldraw(A--(9/4,0)--C--(35/4,3)--cycle,gray*0.5+0.5*lightgray); dot(A^^B^^C^^D^^E^^F); label("$A$", A, W); label("$B$", B, W); label("$C$", C, (1,0)); label("$D$", D, (1,0)); label("$F$", F, N); label("$E$", E, S); [/asy]](https://latex.artofproblemsolving.com/c/e/7/ce7ef019f55e9d0cf7364f8d93782a020489c947.png)


![[asy] size(100); defaultpen(linewidth(.8pt)+fontsize(8pt)); draw(arc((0,1), 1.2, 25, 214)); draw(arc((.951,.309), 1.2, 0, 360)); draw(arc((.588,-.809), 1.2, 132, 370)); draw(arc((-.588,-.809), 1.2, 75, 300)); draw(arc((-.951,.309), 1.2, 96, 228)); label("$A$",(0,1),NW); label("$B$",(-1.1,.309),NW); label("$C$",(.951,.309),E); label("$D$",(-.588,-.809),W); label("$E$",(.588,-.809),S);[/asy]](https://latex.artofproblemsolving.com/2/9/9/29934055ac865974a1057696167fb8e5b4110477.png)



![[asy] unitsize(4mm); defaultpen(linewidth(.8pt)); draw((0,0)--(5,0)--(5,2)--(2,2)--(2,8)--(0,8)--cycle); label("8",(0,4),W); label("5",(5/2,0),S); label("2",(5,1),E); label("2",(1,8),N); [/asy]](https://latex.artofproblemsolving.com/1/2/2/122a4290575eda1b63a0b302c47384ced6bb393e.png)


![[asy] unitsize(1mm); defaultpen(linewidth(.8pt)+fontsize(8pt)); draw((0,0)--(0,25)--(25,25)--(25,0)--cycle); fill((0,20)--(0,15)--(25,15)--(25,20)--cycle,gray); draw((0,15)--(0,20)--(25,20)--(25,15)--cycle); draw((25,15)--(25,20)--(50,20)--(50,15)--cycle); label("$A$",(0,20),W); label("$B$",(50,20),E); label("$C$",(50,15),E); label("$D$",(0,15),W); label("$E$",(0,25),NW); label("$F$",(25,25),NE); label("$G$",(25,0),SE); label("$H$",(0,0),SW); [/asy]](https://latex.artofproblemsolving.com/5/4/3/54371c10b04c0bcf5a86491a02c9b7ecf851cb2d.png)




![[asy] draw((0,0)--(0,10)--(20,10)--(20,0)--cycle); draw(circle((10,5),5));[/asy]](https://latex.artofproblemsolving.com/1/c/1/1c19b6dc0eb24a92fe2b043bf705f662d97486a2.png)