2011年AMC 8 真题:
Problem 1
Margie bought
apples at a cost of
cents per apple. She paid with a 5-dollar bill. How much change did Margie receive?
![]()
Problem 2
Karl's rectangular vegetable garden is
feet by
feet, and Makenna's is
feet by
feet. Which of the following statements are true?
![]()
![]()
![]()
![]()
![]()
Problem 3
Extend the square pattern of 8 black and 17 white square tiles by attaching a border of black tiles around the square. What is the ratio of black tiles to white tiles in the extended pattern?
![[asy] filldraw((0,0)--(5,0)--(5,5)--(0,5)--cycle,white,black); filldraw((1,1)--(4,1)--(4,4)--(1,4)--cycle,mediumgray,black); filldraw((2,2)--(3,2)--(3,3)--(2,3)--cycle,white,black); draw((4,0)--(4,5)); draw((3,0)--(3,5)); draw((2,0)--(2,5)); draw((1,0)--(1,5)); draw((0,4)--(5,4)); draw((0,3)--(5,3)); draw((0,2)--(5,2)); draw((0,1)--(5,1)); [/asy]](https://latex.artofproblemsolving.com/a/2/4/a24e23a268700a40b52b1b449dac9c6d2ec80a4e.png)
![]()
Problem 4
Here is a list of the numbers of fish that Tyler caught in nine outings last summer:
Which statement about the mean, median, and mode is true?

Problem 5
What time was it
minutes after midnight on January 1, 2011?
![]()
![]()
![]()
![]()
![]()
Problem 6
In a town of 351 adults, every adult owns a car, motorcycle, or both. If 331 adults own cars and 45 adults own motorcycles, how many of the car owners do not own a motorcycle?
![]()
以下是我们为您整理的中英双语真题试卷,还有全英版真题供您选择
扫码即可免费领取完整版:



更多AMC 8 历年真题+真题详解
扫码添加顾问即可免费领取


![[asy] pair A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R; A=(4,0); B=(7,0); C=(7,4); D=(8,4); E=(8,5); F=(10,5); G=(10,7); H=(7,7); I=(7,8); J=(5,8); K=(5,7); L=(4,7); M=(4,6); N=(0,6); O=(0,5); P=(2,5); Q=(2,3); R=(4,3); draw(A--B--C--D--E--F--G--H--I--J--K--L--M--N--O--P--Q--R--cycle); label("$X$",(3.4,1.5)); label("6",(7.6,1.5)); label("1",(7.6,3.5)); label("1",(8.4,4.6)); label("2",(9.4,4.6)); label("2",(10.4,6)); label("3",(8.4,7.4)); label("1",(7.5,7.8)); label("2",(6,8.5)); label("1",(4.7,7.8)); label("1",(4.3,7.5)); label("1",(3.5,6.5)); label("4",(1.8,6.5)); label("1",(-0.5,5.5)); label("2",(0.8,4.5)); label("2",(1.5,3.8)); label("2",(2.8,2.6));[/asy]](https://latex.artofproblemsolving.com/b/c/d/bcd57a9d78159bce4d3873f81f5d879beaed1d5a.png)


![[asy] unitsize(0.8cm); draw((-1,0)--(1,0)--(1,-2)--(-1,-2)--cycle); draw((-2,0)--(0,0)--(0,2)--(-2,2)--cycle); draw((0,0)--(2,0)--(2,2)--(0,2)--cycle); draw((-3,2)--(-1,2)--(-1,4)--(-3,4)--cycle); draw((-1,2)--(1,2)--(1,4)--(-1,4)--cycle); draw((1,2)--(1,4)--(3,4)--(3,2)--cycle); label("600",(0,-1)); label("30",(-1,1)); label("6",(-2,3)); label("5",(0,3)); [/asy]](https://latex.artofproblemsolving.com/6/f/f/6ff959a8ad5edfb7806895cbf5fa087e79899f3f.png)




![[asy] pair A,B,C,D,E,F,G,H,O,X; A=dir(45); B=dir(90); C=dir(135); D=dir(180); E=dir(-135); F=dir(-90); G=dir(-45); H=dir(0); O=(0,0); X=midpoint(A--B); fill(X--B--C--D--E--O--cycle,rgb(0.75,0.75,0.75)); draw(A--B--C--D--E--F--G--H--cycle); dot("$A$",A,dir(45)); dot("$B$",B,dir(90)); dot("$C$",C,dir(135)); dot("$D$",D,dir(180)); dot("$E$",E,dir(-135)); dot("$F$",F,dir(-90)); dot("$G$",G,dir(-45)); dot("$H$",H,dir(0)); dot("$X$",X,dir(135/2)); dot("$O$",O,dir(0)); draw(E--O--X); [/asy]](https://latex.artofproblemsolving.com/0/6/6/06635650c87a3cbd84380b9105fc49cc48e3792e.png)



![[asy]draw((0,4)--(0,0)--(6,0)--(6,8)--(0,8)--(0,4)--(6,8)--(0,0)); label("$A$", (0,0), SW); label("$B$", (6, 0), SE); label("$C$", (6,8), NE); label("$D$", (0, 8), NW); label("$M$", (0, 4), W); label("$4$", (0, 2), W); label("$6$", (3, 0), S);[/asy]](https://latex.artofproblemsolving.com/b/5/d/b5d7e3f5ecfd57e90e56a341f52fc4b9b93b2457.png)
![[asy] unitsize(0.9cm); draw((-0.5,0)--(10,0), linewidth(1.5)); draw((-0.5,1)--(10,1)); draw((-0.5,2)--(10,2)); draw((-0.5,3)--(10,3)); draw((-0.5,4)--(10,4)); draw((-0.5,5)--(10,5)); draw((-0.5,6)--(10,6)); draw((-0.5,7)--(10,7)); label("frequency",(-0.5,8)); label("0", (-1, 0)); label("1", (-1, 1)); label("2", (-1, 2)); label("3", (-1, 3)); label("4", (-1, 4)); label("5", (-1, 5)); label("6", (-1, 6)); label("7", (-1, 7)); filldraw((0,0)--(0,7)--(1,7)--(1,0)--cycle, black); filldraw((2,0)--(2,3)--(3,3)--(3,0)--cycle, black); filldraw((4,0)--(4,1)--(5,1)--(5,0)--cycle, black); filldraw((6,0)--(6,4)--(7,4)--(7,0)--cycle, black); filldraw((8,0)--(8,4)--(9,4)--(9,0)--cycle, black); label("3", (0.5, -0.5)); label("4", (2.5, -0.5)); label("5", (4.5, -0.5)); label("6", (6.5, -0.5)); label("7", (8.5, -0.5)); label("name length", (4.5, -1)); [/asy]](https://latex.artofproblemsolving.com/7/3/9/7396694d92e8f9794065daafaf571852434d0b08.png)



![[asy] draw((-1,0)--(0,0)--(0,1)); draw((0,0)--(0.309, -0.951)); filldraw(arc((0,0), (0,1), (-1,0))--(0,0)--cycle, lightgray); filldraw(arc((0,0), (0.309, -0.951), (0,1))--(0,0)--cycle, gray); draw(arc((0,0), (-1,0), (0.309, -0.951))); label("Colby", (-0.5, 0.5)); label("25\%", (-0.5, 0.3)); label("Alicia", (0.7, 0.2)); label("45\%", (0.7, 0)); label("Brenda", (-0.5, -0.4)); label("30\%", (-0.5, -0.6)); [/asy]](https://latex.artofproblemsolving.com/e/c/0/ec034c8e9051c7cc81e1be57e224cbc1ee86693a.png)


![[asy] unitsize(8mm); for (int i=0; i<7; ++i) { draw((i,0)--(i,7),gray); draw((0,i+1)--(7,i+1),gray); } draw((1,3)--(2,4)--(2,5)--(3,6)--(4,5)--(5,5)--(6,4)--(5,3)--(5,2)--(4,1)--(3,2)--(2,2)--cycle,black+2bp); [/asy]](https://latex.artofproblemsolving.com/f/4/d/f4d92072ddf7f5314e710dc9641eb84c3ea32879.png)



![[asy] draw((0,0)--(3,0)); draw((0,0)--(0,2)); draw((0,2)--(3,2)); draw((3,2)--(3,0)); dot((0,0)); dot((0,2)); dot((3,0)); dot((3,2)); draw((2,0)--(2,2)); draw((0,1)--(2,1)); label("A",(0,0),S); label("B",(3,0),S); label("C",(3,2),N); label("D",(0,2),N); [/asy]](https://latex.artofproblemsolving.com/e/0/7/e0752885e3cff488bd89893347c595b7c570d339.png)
![[asy] draw((-13,0)--(0,5)); draw((0,5)--(13,0)); draw((13,0)--(0,-5)); draw((0,-5)--(-13,0)); dot((-13,0)); dot((0,5)); dot((13,0)); dot((0,-5)); label("A",(-13,0),W); label("B",(0,5),N); label("C",(13,0),E); label("D",(0,-5),S); [/asy]](https://latex.artofproblemsolving.com/e/5/4/e54b35c6e9f6a1eaa16a3138ed06ebc73122be63.png)
![[asy] unitsize(0.4 cm); pair transx, transy; int i, j; int x, y; transx = (13,0); transy = (0,-9); for (i = 0; i <= 2; ++i) { for (j = 0; j <= 1; ++j) { if (i <= 1 || j <= 0) { for (x = 1; x <= 10; ++x) { draw(shift(i*transx + j*transy)*((x,0)--(x,5)),gray(0.7) + dashed); } for (y = 1; y <= 5; ++y) { draw(shift(i*transx + j*transy)*((0,y)--(10,y)),gray(0.7) + dashed); } draw(shift(i*transx + j*transy)*((0,0)--(11,0)),Arrow(6)); draw(shift(i*transx + j*transy)*((0,0)--(0,6)),Arrow(6)); label("time", (5,-0.5) + i*transx + j*transy); label(rotate(90)*"distance", (-0.5,2.5) + i*transx + j*transy); } }} draw((0,0)--(1.5,2.5)--(7.5,2.5)--(9,5),linewidth(1.5*bp)); draw((0,0)--(10,5),linewidth(1.5*bp)); draw(shift(transx)*((0,0)--(2.5,2.5)--(7.5,2.5)--(10,5)),linewidth(1.5*bp)); draw(shift(transx)*((0,0)--(9,5)),linewidth(1.5*bp)); draw(shift(2*transx)*((0,0)--(2.5,3)--(7,2)--(10,5)),linewidth(1.5*bp)); draw(shift(2*transx)*((0,0)--(9,5)),linewidth(1.5*bp)); draw(shift(transy)*((0,0)--(2.5,2.5)--(6.5,2.5)--(9,5)),linewidth(1.5*bp)); draw(shift(transy)*((0,0)--(7.5,2)--(10,5)),linewidth(1.5*bp)); draw(shift(transx + transy)*((0,0)--(2.5,2)--(7.5,3)--(10,5)),linewidth(1.5*bp)); draw(shift(transx + transy)*((0,0)--(9,5)),linewidth(1.5*bp)); label("(A)", (-1,6)); label("(B)", (-1,6) + transx); label("(C)", (-1,6) + 2*transx); label("(D)", (-1,6) + transy); label("(E)", (-1,6) + transx + transy); [/asy]](https://latex.artofproblemsolving.com/0/4/d/04decf8a6bb68bcc53035413d5d5750870605b11.png)
![[asy] draw((0,0)--(0,8)); draw((0,8)--(8,8)); draw((8,8)--(8,0)); draw((8,0)--(0,0)); dot((0,0)); dot((0,1)); dot((0,2)); dot((0,3)); dot((0,4)); dot((0,5)); dot((0,6)); dot((0,7)); dot((0,8)); dot((1,0)); dot((1,1)); dot((1,2)); dot((1,3)); dot((1,4)); dot((1,5)); dot((1,6)); dot((1,7)); dot((1,8)); dot((2,0)); dot((2,1)); dot((2,2)); dot((2,3)); dot((2,4)); dot((2,5)); dot((2,6)); dot((2,7)); dot((2,8)); dot((3,0)); dot((3,1)); dot((3,2)); dot((3,3)); dot((3,4)); dot((3,5)); dot((3,6)); dot((3,7)); dot((3,8)); dot((4,0)); dot((4,1)); dot((4,2)); dot((4,3)); dot((4,4)); dot((4,5)); dot((4,6)); dot((4,7)); dot((4,8)); dot((5,0)); dot((5,1)); dot((5,2)); dot((5,3)); dot((5,4)); dot((5,5)); dot((5,6)); dot((5,7)); dot((5,8)); dot((6,0)); dot((6,1)); dot((6,2)); dot((6,3)); dot((6,4)); dot((6,5)); dot((6,6)); dot((6,7)); dot((6,8)); dot((7,0)); dot((7,1)); dot((7,2)); dot((7,3)); dot((7,4)); dot((7,5)); dot((7,6)); dot((7,7)); dot((7,8)); dot((8,0)); dot((8,1)); dot((8,2)); dot((8,3)); dot((8,4)); dot((8,5)); dot((8,6)); dot((8,7)); dot((8,8)); label("P",(4,4),NE); [/asy]](https://latex.artofproblemsolving.com/2/e/f/2ef50880b9e105fcb40568742659a26c359c6c1a.png)



![[asy] // diagram by SirCalcsALot, edited by MRENTHUSIASM size(250); path p = scale(0.8)*unitcircle; pair[] A; pen grey1 = rgb(100/256, 100/256, 100/256); pen grey2 = rgb(183/256, 183/256, 183/256); for (int i=0; i<7; ++i) { A[i] = rotate(60*i)*(1,0);} path hex = A[0]--A[1]--A[2]--A[3]--A[4]--A[5]--cycle; fill(p,grey1); draw(scale(1.25)*hex,black+linewidth(1.25)); pair S = 6A[0]+2A[1]; fill(shift(S)*p,grey1); for (int i=0; i<6; ++i) { fill(shift(S+2*A[i])*p,grey2);} draw(shift(S)*scale(3.25)*hex,black+linewidth(1.25)); pair T = 16A[0]+4A[1]; fill(shift(T)*p,grey1); for (int i=0; i<6; ++i) { fill(shift(T+2*A[i])*p,grey2); fill(shift(T+4*A[i])*p,grey1); fill(shift(T+2*A[i]+2*A[i+1])*p,grey1); } draw(shift(T)*scale(5.25)*hex,black+linewidth(1.25)); [/asy]](https://latex.artofproblemsolving.com/3/8/1/381ea96ddcbeccb0522187fcd4a41c78bd9c8364.png)


