2016年AIME I 真题及答案

2016年AIME I 真题:

Problem 1

For $-1<r<1$, let $S(r)$ denote the sum of the geometric series\[12+12r+12r^2+12r^3+\cdots .\]Let $a$ between $-1$ and $1$ satisfy $S(a)S(-a)=2016$. Find $S(a)+S(-a)$.

Problem 2

Two dice appear to be normal dice with their faces numbered from $1$ to $6$, but each die is weighted so that the probability of rolling the number $k$ is directly proportional to $k$. The probability of rolling a $7$ with this pair of dice is $\frac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.

Problem 3

regular icosahedron is a $20$-faced solid where each face is an equilateral triangle and five triangles meet at every vertex. The regular icosahedron shown below has one vertex at the top, one vertex at the bottom, an upper pentagon of five vertices all adjacent to the top vertex and all in the same horizontal plane, and a lower pentagon of five vertices all adjacent to the bottom vertex and all in another horizontal plane. Find the number of paths from the top vertex to the bottom vertex such that each part of a path goes downward or horizontally along an edge of the icosahedron, and no vertex is repeated.[asy] size(3cm); pair A=(0.05,0),B=(-.9,-0.6),C=(0,-0.45),D=(.9,-0.6),E=(.55,-0.85),F=(-0.55,-0.85),G=B-(0,1.1),H=F-(0,0.6),I=E-(0,0.6),J=D-(0,1.1),K=C-(0,1.4),L=C+K-A; draw(A--B--F--E--D--A--E--A--F--A^^B--G--F--K--G--L--J--K--E--J--D--J--L--K); draw(B--C--D--C--A--C--H--I--C--H--G^^H--L--I--J^^I--D^^H--B,dashed); dot(A^^B^^C^^D^^E^^F^^G^^H^^I^^J^^K^^L); [/asy]

Problem 4

A right prism with height $h$ has bases that are regular hexagons with sides of length $12$. A vertex $A$ of the prism and its three adjacent vertices are the vertices of a triangular pyramid. The dihedral angle (the angle between the two planes) formed by the face of the pyramid that lies in a base of the prism and the face of the pyramid that does not contain $A$ measures $60^\circ$. Find $h^2$.

Problem 5

Anh read a book. On the first day she read $n$ pages in $t$ minutes, where $n$ and $t$ are positive integers. On the second day Anh read $n + 1$ pages in $t + 1$ minutes. Each day thereafter Anh read one more page than she read on the previous day, and it took her one more minute than on the previous day until she completely read the $374$ page book. It took her a total of $319$ minutes to read the book. Find $n + t$.

Problem 6

In $\triangle ABC$ let $I$ be the center of the inscribed circle, and let the bisector of $\angle ACB$ intersect $\overline{AB}$ at $L$. The line through $C$ and $L$ intersects the circumscribed circle of $\triangle ABC$ at the two points $C$ and $D$. If $LI=2$ and $LD=3$, then $IC= \frac{p}{q}$, where $p$ and $q$ are relatively prime positive integers. Find $p+q$.

以下是我们为您整理的真题试卷,扫码即可免费领取完整版:

更多AIME 历年真题+真题详解
扫码添加顾问即可免费领取

2017年AIME II 真题及答案

2017年AIME II 真题:

Problem 1

Find the number of subsets of $\{1, 2, 3, 4, 5, 6, 7, 8\}$ that are subsets of neither $\{1, 2, 3, 4, 5\}$ nor $\{4, 5, 6, 7, 8\}$.

Problem 2

Teams $T_1$$T_2$$T_3$, and $T_4$ are in the playoffs. In the semifinal matches, $T_1$ plays $T_4$, and $T_2$ plays $T_3$. The winners of those two matches will play each other in the final match to determine the champion. When $T_i$ plays $T_j$, the probability that $T_i$ wins is $\frac{i}{i+j}$, and the outcomes of all the matches are independent. The probability that $T_4$ will be the champion is $\frac{p}{q}$, where $p$ and $q$ are relatively prime positive integers. Find $p+q$.

Problem 3

A triangle has vertices $A(0,0)$$B(12,0)$, and $C(8,10)$. The probability that a randomly chosen point inside the triangle is closer to vertex $B$ than to either vertex $A$ or vertex $C$ can be written as $\frac{p}{q}$, where $p$ and $q$ are relatively prime positive integers. Find $p+q$.

Problem 4

Find the number of positive integers less than or equal to $2017$ whose base-three representation contains no digit equal to $0$.

Problem 5

A set contains four numbers. The six pairwise sums of distinct elements of the set, in no particular order, are $189$$320$$287$$234$$x$, and $y$. Find the greatest possible value of $x+y$.

Problem 6

Find the sum of all positive integers $n$ such that $\sqrt{n^2+85n+2017}$ is an integer.

以下是我们为您整理的真题试卷,扫码即可免费领取完整版:

更多AIME 历年真题+真题详解
扫码添加顾问即可免费领取

2017年AIME I 真题及答案

2017年AIME I 真题:

Problem 1

Fifteen distinct points are designated on $\triangle ABC$: the 3 vertices $A$$B$, and $C$$3$ other points on side $\overline{AB}$$4$ other points on side $\overline{BC}$; and $5$ other points on side $\overline{CA}$. Find the number of triangles with positive area whose vertices are among these $15$ points.

Problem 2

When each of $702$$787$, and $855$ is divided by the positive integer $m$, the remainder is always the positive integer $r$. When each of $412$$722$, and $815$ is divided by the positive integer $n$, the remainder is always the positive integer $s \neq r$. Find $m+n+r+s$.

Problem 3

For a positive integer $n$, let $d_n$ be the units digit of $1 + 2 + \dots + n$. Find the remainder when\[\sum_{n=1}^{2017} d_n\]is divided by $1000$.

Problem 4

A pyramid has a triangular base with side lengths $20$$20$, and $24$. The three edges of the pyramid from the three corners of the base to the fourth vertex of the pyramid all have length $25$. The volume of the pyramid is $m\sqrt{n}$, where $m$ and $n$ are positive integers, and $n$ is not divisible by the square of any prime. Find $m+n$.

Problem 5

A rational number written in base eight is $\underline{a} \underline{b} . \underline{c} \underline{d}$, where all digits are nonzero. The same number in base twelve is $\underline{b} \underline{b} . \underline{b} \underline{a}$. Find the base-ten number $\underline{a} \underline{b} \underline{c}$.

Problem 6

A circle circumscribes an isosceles triangle whose two congruent angles have degree measure $x$. Two points are chosen independently and uniformly at random on the circle, and a chord is drawn between them. The probability that the chord intersects the triangle is $\frac{14}{25}$. Find the difference between the largest and smallest possible values of $x$.

以下是我们为您整理的真题试卷,扫码即可免费领取完整版:

更多AIME 历年真题+真题详解
扫码添加顾问即可免费领取

2018年AIME I 真题及答案

2018年AIME I 真题:

Problem 1

Let $S$ be the number of ordered pairs of integers $(a,b)$ with $1 \leq a \leq 100$ and $b \geq 0$ such that the polynomial $x^2+ax+b$ can be factored into the product of two (not necessarily distinct) linear factors with integer coefficients. Find the remainder when $S$ is divided by $1000$.

Problem 2

The number $n$ can be written in base $14$ as $\underline{a}\text{ }\underline{b}\text{ }\underline{c}$, can be written in base $15$ as $\underline{a}\text{ }\underline{c}\text{ }\underline{b}$, and can be written in base $6$ as $\underline{a}\text{ }\underline{c}\text{ }\underline{a}\text{ }\underline{c}\text{ }$, where $a > 0$. Find the base-$10$ representation of $n$.

Problem 3

Kathy has $5$ red cards and $5$ green cards. She shuffles the $10$ cards and lays out $5$ of the cards in a row in a random order. She will be happy if and only if all the red cards laid out are adjacent and all the green cards laid out are adjacent. For example, card orders RRGGG, GGGGR, or RRRRR will make Kathy happy, but RRRGR will not. The probability that Kathy will be happy is $\frac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m + n$.

Problem 4

In $\triangle ABC, AB = AC = 10$ and $BC = 12$. Point $D$ lies strictly between $A$ and $B$ on $\overline{AB}$ and point $E$ lies strictly between $A$ and $C$ on $\overline{AC}$ so that $AD = DE = EC$. Then $AD$ can be expressed in the form $\dfrac{p}{q}$, where $p$ and $q$ are relatively prime positive integers. Find $p+q$.

Problem 5

For each ordered pair of real numbers $(x,y)$ satisfying\[\log_2(2x+y) = \log_4(x^2+xy+7y^2)\]there is a real number $K$ such that\[\log_3(3x+y) = \log_9(3x^2+4xy+Ky^2).\]Find the product of all possible values of $K$.

Problem 6

Let $N$ be the number of complex numbers $z$ with the properties that $|z|=1$ and $z^{6!}-z^{5!}$ is a real number. Find the remainder when $N$ is divided by $1000$.

以下是我们为您整理的真题试卷,扫码即可免费领取完整版:

更多AIME 历年真题+真题详解
扫码添加顾问即可免费领取

2019年AIME II 真题及答案

2019年AIME II 真题:

Problem 1

Two different points, $C$ and $D$, lie on the same side of line $AB$ so that $\triangle ABC$ and $\triangle BAD$ are congruent with $AB=9,BC=AD=10$, and $CA=DB=17$. The intersection of these two triangular regions has area $\tfrac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.

Problem 2

Lily pads $1,2,3,\ldots$ lie in a row on a pond. A frog makes a sequence of jumps starting on pad $1$. From any pad $k$ the frog jumps to either pad $k+1$ or pad $k+2$ chosen randomly with probability $\tfrac{1}{2}$ and independently of other jumps. The probability that the frog visits pad $7$ is $\tfrac{p}{q}$, where $p$ and $q$ are relatively prime positive integers. Find $p+q$.

Problem 3

Find the number of $7$-tuples of positive integers $(a,b,c,d,e,f,g)$ that satisfy the following system of equations:\[abc=70\]\[cde=71\]\[efg=72.\]

Problem 4

A standard six-sided fair die is rolled four times. The probability that the product of all four numbers rolled is a perfect square is $\tfrac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.

Problem 5

Four ambassadors and one advisor for each of them are to be seated at a round table with $12$ chairs numbered in order $1$ to $12$. Each ambassador must sit in an even-numbered chair. Each advisor must sit in a chair adjacent to his or her ambassador. There are $N$ ways for the $8$ people to be seated at the table under these conditions. Find the remainder when $N$ is divided by $1000$.

Problem 6

In a Martian civilization, all logarithms whose bases are not specified as assumed to be base $b$, for some fixed $b\ge2$. A Martian student writes down\[3\log(\sqrt{x}\log x)=56\]\[\log_{\log x}(x)=54\]and finds that this system of equations has a single real number solution $x>1$. Find $b$.

以下是我们为您整理的真题试卷,扫码即可免费领取完整版:

更多AIME 历年真题+真题详解
扫码添加顾问即可免费领取

2019年AIME I 真题及答案

2019年AIME I 真题:

Problem 1

Consider the integer\[N = 9 + 99 + 999 + 9999 + \cdots + \underbrace{99\ldots 99}_\text{321 digits}.\]Find the sum of the digits of $N$.

Problem 2

Jenn randomly chooses a number $J$ from $1, 2, 3,\ldots, 19, 20$. Bela then randomly chooses a number $B$ from $1, 2, 3,\ldots, 19, 20$ distinct from $J$. The value of $B - J$ is at least $2$ with a probability that can be expressed in the form $\tfrac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.

Problem 3

In $\triangle PQR$$PR=15$$QR=20$, and $PQ=25$. Points $A$ and $B$ lie on $\overline{PQ}$, points $C$ and $D$ lie on $\overline{QR}$, and points $E$ and $F$ lie on $\overline{PR}$, with $PA=QB=QC=RD=RE=PF=5$. Find the area of hexagon $ABCDEF$.

Problem 4

A soccer team has $22$ available players. A fixed set of $11$ players starts the game, while the other $11$ are available as substitutes. During the game, the coach may make as many as $3$ substitutions, where any one of the $11$ players in the game is replaced by one of the substitutes. No player removed from the game may reenter the game, although a substitute entering the game may be replaced later. No two substitutions can happen at the same time. The players involved and the order of the substitutions matter. Let $n$ be the number of ways the coach can make substitutions during the game (including the possibility of making no substitutions). Find the remainder when $n$ is divided by $1000$.

Problem 5

A moving particle starts at the point $(4,4)$ and moves until it hits one of the coordinate axes for the first time. When the particle is at the point $(a,b)$, it moves at random to one of the points $(a-1,b)$$(a,b-1)$, or $(a-1,b-1)$, each with probability $\tfrac{1}{3}$, independently of its previous moves. The probability that it will hit the coordinate axes at $(0,0)$ is $\tfrac{m}{3^n}$, where $m$ and $n$ are positive integers, and $m$ is not divisible by $3$. Find $m + n$.

Problem 6

In convex quadrilateral $KLMN$, side $\overline{MN}$ is perpendicular to diagonal $\overline{KM}$, side $\overline{KL}$ is perpendicular to diagonal $\overline{LN}$$MN = 65$, and $KL = 28$. The line through $L$ perpendicular to side $\overline{KN}$ intersects diagonal $\overline{KM}$ at $O$ with $KO = 8$. Find $MO$.

以下是我们为您整理的真题试卷,扫码即可免费领取完整版:

更多AIME 历年真题+真题详解
扫码添加顾问即可免费领取

2020年AIME II 真题及答案

2020年AIME II 真题:

Problem 1

Find the number of ordered pairs of positive integers $(m,n)$ such that ${m^2n = 20 ^{20}}$.

Problem 2

Let $P$ be a point chosen uniformly at random in the interior of the unit square with vertices at $(0,0), (1,0), (1,1)$, and $(0,1)$. The probability that the slope of the line determined by $P$ and the point $\left(\frac58, \frac38 \right)$ is greater than or equal to $\frac12$ can be written as $\frac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.

Problem 3

The value of $x$ that satisfies $\log_{2^x} 3^{20} = \log_{2^{x+3}} 3^{2020}$ can be written as $\frac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.

Problem 4

Triangles $\triangle ABC$ and $\triangle A'B'C'$ lie in the coordinate plane with vertices $A(0,0)$$B(0,12)$$C(16,0)$$A'(24,18)$$B'(36,18)$$C'(24,2)$. A rotation of $m$ degrees clockwise around the point $(x,y)$ where $0<m<180$, will transform $\triangle ABC$ to $\triangle A'B'C'$. Find $m+x+y$.

Problem 5

For each positive integer $n$, let $f(n)$ be the sum of the digits in the base-four representation of $n$ and let $g(n)$ be the sum of the digits in the base-eight representation of $f(n)$. For example, $f(2020) = f(133210_{\text{4}}) = 10 = 12_{\text{8}}$, and $g(2020) = \text{the digit sum of }12_{\text{8}} = 3$. Let $N$ be the least value of $n$ such that the base-sixteen representation of $g(n)$ cannot be expressed using only the digits $0$ through $9$. Find the remainder when $N$ is divided by $1000$.

Problem 6

Define a sequence recursively by $t_1 = 20$$t_2 = 21$, and\[t_n = \frac{5t_{n-1}+1}{25t_{n-2}}\]for all $n \ge 3$. Then $t_{2020}$ can be written as $\frac{p}{q}$, where $p$ and $q$ are relatively prime positive integers. Find $p+q$.

以下是我们为您整理的真题试卷,扫码即可免费领取完整版:

更多AIME 历年真题+真题详解
扫码添加顾问即可免费领取

2020年AIME I 真题及答案

2020年AIME I 真题:

Problem 1

In $\triangle ABC$ with $AB=AC,$ point $D$ lies strictly between $A$ and $C$ on side $\overline{AC},$ and point $E$ lies strictly between $A$ and $B$ on side $\overline{AB}$ such that $AE=ED=DB=BC.$ The degree measure of $\angle ABC$ is $\tfrac{m}{n},$ where $m$ and $n$ are relatively prime positive integers. Find $m+n.$

Problem 2

There is a unique positive real number $x$ such that the three numbers $\log_8(2x),\log_4x,$ and $\log_2x,$ in that order, form a geometric progression with positive common ratio. The number $x$ can be written as $\tfrac{m}{n},$ where $m$ and $n$ are relatively prime positive integers. Find $m+n.$

Problem 3

A positive integer $N$ has base-eleven representation $\underline{a}\kern 0.1em\underline{b}\kern 0.1em\underline{c}$ and base-eight representation $\underline1\kern 0.1em\underline{b}\kern 0.1em\underline{c}\kern 0.1em\underline{a},$ where $a,b,$ and $c$ represent (not necessarily distinct) digits. Find the least such $N$ expressed in base ten.

Problem 4

Let $S$ be the set of positive integers $N$ with the property that the last four digits of $N$ are $2020,$ and when the last four digits are removed, the result is a divisor of $N.$ For example, $42{,}020$ is in $S$ because $4$ is a divisor of $42{,}020.$ Find the sum of all the digits of all the numbers in $S.$ For example, the number $42{,}020$ contributes $4+2+0+2+0=8$ to this total.

Problem 5

Six cards numbered $1$ through $6$ are to be lined up in a row. Find the number of arrangements of these six cards where one of the cards can be removed leaving the remaining five cards in either ascending or descending order.

Problem 6

A flat board has a circular hole with radius $1$ and a circular hole with radius $2$ such that the distance between the centers of the two holes is $7$. Two spheres with equal radii sit in the two holes such that the spheres are tangent to each other. The square of the radius of the spheres is $\tfrac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.

Problem 7

A club consisting of $11$ men and $12$ women needs to choose a committee from among its members so that the number of women on the committee is one more than the number of men on the committee. The committee could have as few as $1$ member or as many as $23$ members. Let $N$ be the number of such committees that can be formed. Find the sum of the prime numbers that divide $N.$

以下是我们为您整理的真题试卷,扫码即可免费领取完整版:

更多AIME 历年真题+真题详解
扫码添加顾问即可免费领取

2021年AIME II 真题及答案

2021年AIME II 真题:

Problem 1

Find the arithmetic mean of all the three-digit palindromes. (Recall that a palindrome is a number that reads the same forward and backward, such as $777$ or $383$.)

Problem 2

Equilateral triangle $ABC$ has side length $840$. Point $D$ lies on the same side of line $BC$ as $A$ such that $\overline{BD} \perp \overline{BC}$. The line $\ell$ through $D$ parallel to line $BC$ intersects sides $\overline{AB}$ and $\overline{AC}$ at points $E$ and $F$, respectively. Point $G$ lies on $\ell$ such that $F$ is between $E$ and $G$$\triangle AFG$ is isosceles, and the ratio of the area of $\triangle AFG$ to the area of $\triangle BED$ is $8:9$. Find $AF$.

Problem 3

Find the number of permutations $x_1, x_2, x_3, x_4, x_5$ of numbers $1, 2, 3, 4, 5$ such that the sum of five products\[x_1x_2x_3 + x_2x_3x_4 + x_3x_4x_5 + x_4x_5x_1 + x_5x_1x_2\]is divisible by $3$.

Problem 4

There are real numbers $a, b, c,$ and $d$ such that $-20$ is a root of $x^3 + ax + b$ and $-21$ is a root of $x^3 + cx^2 + d.$ These two polynomials share a complex root $m + \sqrt{n} \cdot i,$ where $m$ and $n$ are positive integers and $i = \sqrt{-1}.$ Find $m+n.$

Problem 5

For positive real numbers $s$, let $\tau(s)$ denote the set of all obtuse triangles that have area $s$ and two sides with lengths $4$ and $10$. The set of all $s$ for which $\tau(s)$ is nonempty, but all triangles in $\tau(s)$ are congruent, is an interval $[a,b)$. Find $a^2+b^2$.

Problem 6

For any finite set $S$, let $|S|$ denote the number of elements in $S$. Find the number of ordered pairs $(A,B)$ such that $A$ and $B$ are (not necessarily distinct) subsets of $\{1,2,3,4,5\}$ that satisfy\[|A| \cdot |B| = |A \cap B| \cdot |A \cup B|\]

以下是我们为您整理的真题试卷,扫码即可免费领取完整版:

更多AIME 历年真题+真题详解
扫码添加顾问即可免费领取

2021年AIME I 真题及答案

2021年AIME I 真题:

Problem 1

Zou and Chou are practicing their $100$-meter sprints by running $6$ races against each other. Zou wins the first race, and after that, the probability that one of them wins a race is $\frac23$ if they won the previous race but only $\frac13$ if they lost the previous race. The probability that Zou will win exactly $5$ of the $6$ races is $\frac mn$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.

Problem 2

In the diagram below, $ABCD$ is a rectangle with side lengths $AB=3$ and $BC=11$, and $AECF$ is a rectangle with side lengths $AF=7$ and $FC=9,$ as shown. The area of the shaded region common to the interiors of both rectangles is $\frac mn$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.

[asy] pair A, B, C, D, E, F; A = (0,3); B=(0,0); C=(11,0); D=(11,3); E=foot(C, A, (9/4,0)); F=foot(A, C, (35/4,3)); draw(A--B--C--D--cycle); draw(A--E--C--F--cycle); filldraw(A--(9/4,0)--C--(35/4,3)--cycle,gray*0.5+0.5*lightgray); dot(A^^B^^C^^D^^E^^F); label("$A$", A, W); label("$B$", B, W); label("$C$", C, (1,0)); label("$D$", D, (1,0)); label("$F$", F, N); label("$E$", E, S); [/asy]

Problem 3

Find the number of positive integers less than $1000$ that can be expressed as the difference of two integral powers of $2.$

Problem 4

Find the number of ways $66$ identical coins can be separated into three nonempty piles so that there are fewer coins in the first pile than in the second pile and fewer coins in the second pile than in the third pile.

Problem 5

Call a three-term strictly increasing arithmetic sequence of integers special if the sum of the squares of the three terms equals the product of the middle term and the square of the common difference. Find the sum of the third terms of all special sequences.

Problem 6

Segments $\overline{AB}, \overline{AC},$ and $\overline{AD}$ are edges of a cube and $\overline{AG}$ is a diagonal through the center of the cube. Point $P$ satisfies $BP=60\sqrt{10}$$CP=60\sqrt{5}$$DP=120\sqrt{2}$, and $GP=36\sqrt{7}$. Find $AP.$

以下是我们为您整理的真题试卷,扫码即可免费领取完整版:

更多AIME 历年真题+真题详解
扫码添加顾问即可免费领取