2020年AIME I 真题:
Problem 1
In with
point
lies strictly between
and
on side
and point
lies strictly between
and
on side
such that
The degree measure of
is
where
and
are relatively prime positive integers. Find
Problem 2
There is a unique positive real number such that the three numbers
and
in that order, form a geometric progression with positive common ratio. The number
can be written as
where
and
are relatively prime positive integers. Find
Problem 3
A positive integer has base-eleven representation
and base-eight representation
where
and
represent (not necessarily distinct) digits. Find the least such
expressed in base ten.
Problem 4
Let be the set of positive integers
with the property that the last four digits of
are
and when the last four digits are removed, the result is a divisor of
For example,
is in
because
is a divisor of
Find the sum of all the digits of all the numbers in
For example, the number
contributes
to this total.
Problem 5
Six cards numbered through
are to be lined up in a row. Find the number of arrangements of these six cards where one of the cards can be removed leaving the remaining five cards in either ascending or descending order.
Problem 6
A flat board has a circular hole with radius and a circular hole with radius
such that the distance between the centers of the two holes is
. Two spheres with equal radii sit in the two holes such that the spheres are tangent to each other. The square of the radius of the spheres is
, where
and
are relatively prime positive integers. Find
.
Problem 7
A club consisting of men and
women needs to choose a committee from among its members so that the number of women on the committee is one more than the number of men on the committee. The committee could have as few as
member or as many as
members. Let
be the number of such committees that can be formed. Find the sum of the prime numbers that divide
以下是我们为您整理的真题试卷,扫码即可免费领取完整版:
更多AIME 历年真题+真题详解
扫码添加顾问即可免费领取