2020年AIME I 真题及答案

2020年AIME I 真题:

Problem 1

In $\triangle ABC$ with $AB=AC,$ point $D$ lies strictly between $A$ and $C$ on side $\overline{AC},$ and point $E$ lies strictly between $A$ and $B$ on side $\overline{AB}$ such that $AE=ED=DB=BC.$ The degree measure of $\angle ABC$ is $\tfrac{m}{n},$ where $m$ and $n$ are relatively prime positive integers. Find $m+n.$

Problem 2

There is a unique positive real number $x$ such that the three numbers $\log_8(2x),\log_4x,$ and $\log_2x,$ in that order, form a geometric progression with positive common ratio. The number $x$ can be written as $\tfrac{m}{n},$ where $m$ and $n$ are relatively prime positive integers. Find $m+n.$

Problem 3

A positive integer $N$ has base-eleven representation $\underline{a}\kern 0.1em\underline{b}\kern 0.1em\underline{c}$ and base-eight representation $\underline1\kern 0.1em\underline{b}\kern 0.1em\underline{c}\kern 0.1em\underline{a},$ where $a,b,$ and $c$ represent (not necessarily distinct) digits. Find the least such $N$ expressed in base ten.

Problem 4

Let $S$ be the set of positive integers $N$ with the property that the last four digits of $N$ are $2020,$ and when the last four digits are removed, the result is a divisor of $N.$ For example, $42{,}020$ is in $S$ because $4$ is a divisor of $42{,}020.$ Find the sum of all the digits of all the numbers in $S.$ For example, the number $42{,}020$ contributes $4+2+0+2+0=8$ to this total.

Problem 5

Six cards numbered $1$ through $6$ are to be lined up in a row. Find the number of arrangements of these six cards where one of the cards can be removed leaving the remaining five cards in either ascending or descending order.

Problem 6

A flat board has a circular hole with radius $1$ and a circular hole with radius $2$ such that the distance between the centers of the two holes is $7$. Two spheres with equal radii sit in the two holes such that the spheres are tangent to each other. The square of the radius of the spheres is $\tfrac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.

Problem 7

A club consisting of $11$ men and $12$ women needs to choose a committee from among its members so that the number of women on the committee is one more than the number of men on the committee. The committee could have as few as $1$ member or as many as $23$ members. Let $N$ be the number of such committees that can be formed. Find the sum of the prime numbers that divide $N.$

以下是我们为您整理的真题试卷,扫码即可免费领取完整版:

更多AIME 历年真题+真题详解
扫码添加顾问即可免费领取