2010年AIME II 真题:
Problem 1
Let be the greatest integer multiple of all of whose digits are even and no two of whose digits are the same. Find the remainder when is divided by .
Problem 2
A point is chosen at random in the interior of a unit square . Let denote the distance from to the closest side of . The probability that is equal to , where and are relatively prime positive integers. Find .
Problem 3
Let be the product of all factors (not necessarily distinct) where and are integers satisfying . Find the greatest positive integer such that divides .
Problem 4
Dave arrives at an airport which has twelve gates arranged in a straight line with exactly feet between adjacent gates. His departure gate is assigned at random. After waiting at that gate, Dave is told the departure gate has been changed to a different gate, again at random. Let the probability that Dave walks feet or less to the new gate be a fraction , where and are relatively prime positive integers. Find .
Problem 5
Positive numbers , , and satisfy and . Find .
Problem 6
Find the smallest positive integer with the property that the polynomial can be written as a product of two nonconstant polynomials with integer coefficients.
以下是我们为您整理的真题试卷,扫码即可免费领取完整版:
更多AIME 历年真题+真题详解
扫码添加顾问即可免费领取